1
|
Stolar T, Pearce BK, Etter M, Truong KN, Ostojić T, Krajnc A, Mali G, Rossi B, Molčanov K, Lončarić I, Meštrović E, Užarević K, Grisanti L. Base-pairing of uracil and 2,6-diaminopurine: from cocrystals to photoreactivity. iScience 2024; 27:109894. [PMID: 38783999 PMCID: PMC11112615 DOI: 10.1016/j.isci.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
We show that the non-canonical nucleobase 2,6-diaminopurine (D) spontaneously base pairs with uracil (U) in water and the solid state without the need to be attached to the ribose-phosphate backbone. Depending on the reaction conditions, D and U assemble in thermodynamically stable hydrated and anhydrated D-U base-paired cocrystals. Under UV irradiation, an aqueous solution of D-U base-pair undergoes photochemical degradation, while a pure aqueous solution of U does not. Our simulations suggest that D may trigger the U photodimerization and show that complementary base-pairing modifies the photochemical properties of nucleobases, which might have implications for prebiotic chemistry.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ben K.D. Pearce
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Tea Ostojić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Andraž Krajnc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Barbara Rossi
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | | | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | | | - Luca Grisanti
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
2
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|