1
|
Fița AC, Secăreanu AA, Musuc AM, Ozon EA, Sarbu I, Atkinson I, Rusu A, Mati E, Anuta V, Pop AL. The Influence of the Polymer Type on the Quality of Newly Developed Oral Immediate-Release Tablets Containing Amiodarone Solid Dispersions Obtained by Hot-Melt Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196600. [PMID: 36235137 PMCID: PMC9573735 DOI: 10.3390/molecules27196600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The present study aims to demonstrate the influence of the polymer-carrier type and proportion on the quality performance of newly developed oral immediate-release tablets containing amiodarone solid dispersions obtained by hot-melt extrusion. Twelve solid dispersions including amiodarone and different polymers (PEG 1500, PEG 4000; PEG 8000, Soluplus®, and Kolliphor® 188) were developed and prepared by hot-melt extrusion using a horizontal extruder realized by the authors in their own laboratory. Only eleven of the dispersions presented suitable physical characteristics and they were used as active ingredients in eleven tablet formulations that contain the same amounts of the same excipients, varying only in solid dispersion type. The solid dispersions’ properties were established by optical microscopy with reflected light, volumetric controls and particle size evaluation. In order to prove that the complex powders have appropriate physical characteristics for the direct compression process, they were subjected to different analyses regarding their flowability and compressibility behavior. Additionally, the Fourier transform infrared spectroscopy and X-ray diffraction analysis were performed on the obtained solid dispersions. After confirming the proper physical attributes for all blends, they were processed into the form of tablets by direct compression technology. The manufactured tablets were evaluated for pharmacotechnical (dimensions–diameter and thickness, mass uniformity, hardness and friability) and in vitro biopharmaceutical (disintegration time and drug release) performances. Furthermore, the influence of the polymer matrix on their quality was determined. The high differences in flow and compression performances of the solid dispersions prove the relevant influence of the polymer type and their concentration-dependent plasticizing properties. The increase in flowability and compressibility characteristics of the solid dispersions could be noticed after combining them with direct compression excipients owning superior mechanical qualities. The influence of the polymer type is best detected in the disintegration test, where the obtained values are quite different between the studied formulations. The use of PEG 1500 alone or combined in various proportions with Soluplus® leads to rapid disintegration. In contrast, the mixture of PEG 4000 and Poloxamer 188 in equal proportions determined the increase in disintegration time to 120 s. The use of Poloxamer 188 alone and a 3:1 combination of PEG 4000 and Soluplus® also generates a prolonged disintegration time for the tablets.
Collapse
Affiliation(s)
- Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Ana Andreea Secăreanu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Iulian Sarbu
- Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, Faculty of Pharmacy, “Titu Maiorescu” University, 004051 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Erand Mati
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Titu Maiorescu” University, 004051 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Anca Lucia Pop
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
2
|
Indomethacin-containing interpolyelectrolyte complexes based on Eudragit ® E PO/S 100 copolymers as a novel drug delivery system. Int J Pharm 2017; 524:121-133. [DOI: 10.1016/j.ijpharm.2017.03.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
|
3
|
Moustafine RI. Role of macromolecular interactions of pharmaceutically acceptable polymers in functioning oral drug delivery systems. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214020388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Moustafine RI, Bukhovets AV, Sitenkov AY, Kemenova VA, Rombaut P, Van den Mooter G. Eudragit E PO as a Complementary Material for Designing Oral Drug Delivery Systems with Controlled Release Properties: Comparative Evaluation of New Interpolyelectrolyte Complexes with Countercharged Eudragit L100 Copolymers. Mol Pharm 2013; 10:2630-41. [DOI: 10.1021/mp4000635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- R. I. Moustafine
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - A. V. Bukhovets
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - A. Y. Sitenkov
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - V. A. Kemenova
- Scientific Center for Biomedical
Technology, State Research Institute of Medicinal and Aromatic Plants (VILAR), 123056 Moscow, Russian Federation
| | - P. Rombaut
- Drug Delivery and Disposition, University of Leuven (KULeuven), 3000 Leuven, Belgium
| | - G. Van den Mooter
- Drug Delivery and Disposition, University of Leuven (KULeuven), 3000 Leuven, Belgium
| |
Collapse
|