1
|
A phase 1 trial of 4-(N-(S-penicillaminylacetyl)amino)-phenylarsonous acid (PENAO) in patients with advanced solid tumours. Cancer Chemother Pharmacol 2021; 87:613-620. [PMID: 33496801 DOI: 10.1007/s00280-020-04225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE This phase I study was conducted to evaluate the safety and Maximum Tolerated Dose of PENAO (4-(N-(S-penicillaminylacetyl)amino)-phenylarsonous acid), a second-generation organic arsenical with anti-mitochondrial activity, when given as a continuous intravenous infusion (CIVI), in patients with advanced solid tumours. METHODS Eligibility criteria for this trial included age ≥ 18 years, advanced solid tumour, ECOG Performance Status ≤ 1 and adequate organ function. PENAO was administered by CIVI, with dose levels initially increased by infusion duration in a 21-day cycle at a fixed daily dose and then increased daily dose. Standard dose-limiting toxicity (DLT) definitions were used in a "3 + 3" design. Patients had regular monitoring of toxicity and efficacy. Pharmacokinetic assays of serum and urine As were performed. RESULTS Twenty-six patients were treated across 8 dose levels. The only dose-limiting toxicity (DLT) observed was fatigue, that occurred in one patient treated at the highest dose level of 9 mg/m2/day. No significant organ toxicity or objective responses were observed, although there were two patients with stable disease lasting up to 7 months. Pharmacokinetic analysis unexpectedly indicated a half-life of 9-19 days, invalidating the CIVI dosing resulting in discontinuation of the study before the RP2D was defined. CONCLUSIONS PENAO was administered by CIVI at dose levels up to 9 mg/m2/day with only one DLT noted. Pharmacokinetic studies invalidated the rationale for continuous dosing and led to discontinuation of the trial without defining a RP2D. Future clinical development of PENAO will use intermittent dosing schedule, alone and in combination with rapamycin.
Collapse
|
2
|
Sou T, Hansen J, Liepinsh E, Backlund M, Ercan O, Grinberga S, Cao S, Giachou P, Petersson A, Tomczak M, Urbas M, Zabicka D, Vingsbo Lundberg C, Hughes D, Hobbie SN, Friberg LE. Model-Informed Drug Development for Antimicrobials: Translational PK and PK/PD Modeling to Predict an Efficacious Human Dose for Apramycin. Clin Pharmacol Ther 2020; 109:1063-1073. [PMID: 33150591 PMCID: PMC8048880 DOI: 10.1002/cpt.2104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Apramycin represents a subclass of aminoglycoside antibiotics that has been shown to evade almost all mechanisms of clinically relevant aminoglycoside resistance. Model-informed drug development may facilitate its transition from preclinical to clinical phase. This study explored the potential of pharmacokinetic/pharmacodynamic (PK/PD) modeling to maximize the use of in vitro time-kill and in vivo preclinical data for prediction of a human efficacious dose (HED) for apramycin. PK model parameters of apramycin from four different species (mouse, rat, guinea pig, and dog) were allometrically scaled to humans. A semimechanistic PK/PD model was developed from the rich in vitro data on four Escherichia coli strains and subsequently the sparse in vivo efficacy data on the same strains were integrated. An efficacious human dose was predicted from the PK/PD model and compared with the classical PK/PD index methodology and the aminoglycoside dose similarity. One-compartment models described the PK data and human values for clearance and volume of distribution were predicted to 7.07 L/hour and 26.8 L, respectively. The required fAUC/MIC (area under the unbound drug concentration-time curve over MIC ratio) targets for stasis and 1-log kill in the thigh model were 34.5 and 76.2, respectively. The developed PK/PD model predicted the efficacy data well with strain-specific differences in susceptibility, maximum bacterial load, and resistance development. All three dose prediction approaches supported an apramycin daily dose of 30 mg/kg for a typical adult patient. The results indicate that the mechanistic PK/PD modeling approach can be suitable for HED prediction and serves to efficiently integrate all available efficacy data with potential to improve predictive capacity.
Collapse
Affiliation(s)
- Tomás Sou
- Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jon Hansen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | | | - Maria Backlund
- Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling, Uppsala University, Uppsala, Sweden
| | - Onur Ercan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Paraskevi Giachou
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Petersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lena E Friberg
- Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Elimination Half-Life of Short Peptide Drugs in Humans Extrapolated From Animal Pharmacokinetic Pharmacokinetic Studies. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Method Development for Quantitative Determination of Ormustine in Biological Fluids by High Performance Liquid Chromatography with Mass-Spectrometric Detection. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|