1
|
Gao Y, Zhu H, Lv L, Xu X, Li W, Fu W. Discovery of N'-benzyl-3-chloro-N-((1S,3R,4R)-3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)cyclohexyl)benzenesulfonamide as a novel selective KOR ligand. Eur J Med Chem 2024; 276:116643. [PMID: 38986343 DOI: 10.1016/j.ejmech.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
The effective management of moderate to severe pain often relies on the use of analgesic agents. However, the widespread utility of these medications is hindered by the occurrence of several undesirable side effects. In light of this challenge, there is growing interest in the development of κ opioid receptor (KOR) agonists, which have shown promise in mitigating these adverse effects. In this study, leveraging the structural scaffold of compound D (our previous study), we embarked on the design, synthesis, and evaluation of a series of N'-benzyl-3-chloro-N- ((1S,3R,4R)-3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)cyclohexyl)benzenesulfonamide derivatives. These compounds were subjected to comprehensive in vitro and in vivo test. Through systematic structure-activity relationship (SAR) exploration, we successfully identified compound 23p (Ki(KOR):1.9 nM) as a highly selective KOR ligand of new chemotype. 23p showed high clearance in vitro PK test, and abdominal contraction test showed potent antinociceptive effect. 23p and its O-demethyl metabolite 25 were both found in the plasma of mouse, 25 also showed potent affinity toward KOR (Ki(KOR): 3.1 nM), both they contribute to the analgesic effect. Moreover, 23p exhibited potent antinociceptive activity in abdominal constriction test, which was effectively abolished by pre-treatment of nor-BNI, a selective KOR antagonist.
Collapse
Affiliation(s)
- Yang Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Haoran Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Lunan Lv
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Xiaodi Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Liu X, Jiang S, Kong L, Ye R, Xiao L, Xu X, He Q, Wei Y, Li Z, Sun H, Xie Q, Xu X, Lu Y, Wang Y, Li W, Fu W, Qiu Z, Liu J, Shao L. Exploration of the SAR Connection between Morphinan- and Arylacetamide-Based κ Opioid Receptor (κOR) Agonists Using the Strategy of Bridging. ACS Chem Neurosci 2021; 12:1018-1030. [PMID: 33650843 DOI: 10.1021/acschemneuro.1c00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
κ opioid receptor (κOR) is a subtype of opioid receptors, and there are two major κOR agonists currently available, morphinans and arylacetamides, which are structurally distinct from each other. Numerous efforts had been made to correlate these series of compounds in order to establish a consensus binding pattern for κOR agonists. Unfortunately, no morphinan-based agent with an arylacetamidyl substituent has been identified as a κOR agonist with a pharmacological profile similar to arylacetamides. Since the recently described morphinan-based compound SLL-039 was identified as a selective and potent κOR agonist that contains a unique benzamidyl substituent in structure similar to arylacetamides, numerous arylacetamidyl substituents were introduced to this scaffold to examine whether the structure-activity relationships (SARs) of arylacetamides in conferring κOR agonistic activities could be reproduced by these analogues. Thus, a series of N-cyclopropylmethyl-7α-arylacetamidylphenyl-6,14-endoethanotetrahydronorthebaine analogues were designed, synthesized, and assayed for biological activities. Among these compounds, compound 4j with a 3',4'-dimethylphenylacetamidyl substituent showed a single digit low nanomolar affinity to the κOR and relatively high subtype selectivity in binding assays, but this profile was not reproduced in functional assays. In contrast, compound 4i displayed moderately selective κOR agonistic activities in functional assays, which was inconsistent with its nonselective nature in binding assays. Overall, introduction of an arylacetamidyl substituent to the morphinan-based scaffold was associated with pharmacological diversity in both binding and functional activities on opioid receptors in vitro. The resultant SARs were inconsistent with that of classical arylacetamides as κOR agonists, despite bearing a similar arylacetamidyl substituent in the structure. Therefore, the arylacetamidyl substituent of the morphinan-based scaffold was found to be disconnected from that of arylacetamides in conferring κOR activities.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 210009, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yan Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
4
|
Xiao L, Wang Y, Zhang M, Wu W, Kong L, Ma Y, Xu X, Liu X, He Q, Qian Y, Sun H, Wu H, Lin C, Huang H, Ye R, Jiang S, Ye RF, Yuan C, Fang S, Xue D, Yang X, Chen H, Zheng Y, Yu L, Xie Q, Zheng L, Fu W, Li W, Qiu Z, Liu J, Shao L. Discovery of a Highly Selective and Potent κ Opioid Receptor Agonist from N-Cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines with Reduced Central Nervous System (CNS) Side Effects Navigated by the Message-Address Concept. J Med Chem 2019; 62:11054-11070. [PMID: 31738550 DOI: 10.1021/acs.jmedchem.9b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective and safe analgesics represent an unmet medical need for the treatment of acute and chronic pain. A series of N-cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines were designed, synthesized, and assayed, leading to the discovery of a benzylamine derivative (compound 4, SLL-039) as a highly selective and potent κ opioid agonist (κ, Ki = 0.47 nM, κ/μ = 682, κ/δ = 283), which was confirmed by functional assays in vitro and antinociceptive assays in vivo. The in vivo effect could be blocked by pretreatment with the selective κ antagonist nor-BNI. Moreover, this compound did not induce sedation, a common dose limiting effect of κ opioid receptor agonists, at its analgesic dose compared to U50,488H. The dissociation of sedation/antinociception found in SLL-039 was assumed to be correlated with the occupation of its benzamide motif in a unique subsite involving V1182.63, W124EL1, and E209EL2.
Collapse
Affiliation(s)
- Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Mumei Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Weiwei Wu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,Shanghai University School of Life Sciences , No. 99 Shangda Road , Shanghai 200444 , China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yuanyuan Qian
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Haihao Wu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Cheng Lin
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Rongrong Ye
- Shanghai Institute of Technology , No. 100 Haiquan Road , Shanghai 201418 , China
| | - Shuang Jiang
- Nanjing University of Chinese Medicine , No. 138 Xianlin Avenue , Nanjing 210023 , China
| | - Ru-Feng Ye
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Congmin Yuan
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Shengyang Fang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Xicheng Yang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Hao Chen
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yilin Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Lan Zheng
- Minhang Hospital , Fudan University , No. 170 Xinsong Road , Shanghai 201199 , China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China.,State Key Laboratory of Medical Neurobiology , Fudan University , No. 138 Yixueyuan Road , Shanghai 200032 , China
| |
Collapse
|