1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Alya Nabilah G, Adi Nugroho R, Dendy D, Handayani M, Sukowati C, Tiribelli C, Lory Crocè S, Wahyu Lestari W. Dynamic pH‐Responsive Release and Biological Impact of In Situ Quercetin‐Modified MIL‐101(Fe)‐NH 2. CHEMNANOMAT 2025; 11. [DOI: 10.1002/cnma.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 02/02/2025]
Abstract
AbstractA successful investigation was conducted on the in situ modification of MIL‐101(Fe)‐NH2 with quercetin and its controlled release under various pH conditions. MIL‐101(Fe)‐NH2 was synthesized using an electrochemical method at room temperature (15 volts, 30 min). The formation of the material was confirmed through comprehensive analyses, including PXRD, FTIR, and TGA. Nitrogen sorption isotherm measurements revealed that Qu@MIL‐101(Fe)‐NH2 exhibited a smaller surface area compared to MIL‐101(Fe)‐NH2, with both materials classified as mesoporous. Transmission electron microscopy (TEM) clearly depicted the materials’ octahedral microspindle morphology. The cumulative percent release (CPR) of quercetin from Qu@MIL‐101(Fe)‐NH2 over 72 h was determined to be 53.45 % at pH 1.2, 19.48 % at pH 4.8, and 5.87 % at pH 7.4. Notably, quercetin release in the acidic microenvironment representative of cancer cells (pH 4.8) was nearly four times higher than under physiological conditions (pH 7.4). Kinetic release studies indicated that quercetin release from Qu@MIL‐101(Fe)‐NH2 followed the Ritger‐Peppas kinetic model, suggesting non‐Fickian diffusion. The MIL‐101(Fe)‐NH2 nanocarriers, with in situ‐loaded quercetin, demonstrated promising potential for pH‐triggered drug release. Additionally, the safety of MIL‐101(Fe)‐NH2 in biological models and the anticancer efficacy of quercetin were evaluated in vitro using two liver cancer cell lines.
Collapse
Affiliation(s)
- Ghina Alya Nabilah
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Roshid Adi Nugroho
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Dendy Dendy
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems National Research and Innovation Agency (BRIN) Puspiptek Area Tangerang Selatan, Banten 15314 Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology National Research and Innovation Agency (BRIN) Jakarta Pusat 10340 Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS AREA Science Park Basovizza 34049 Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS AREA Science Park Basovizza 34049 Italy
| | - Saveria Lory Crocè
- Department of Medicine, Surgery and Health Sciences University of Trieste Trieste Italy
| | - Witri Wahyu Lestari
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| |
Collapse
|
3
|
Foulady-Dehaghi R, Sohrabnezhad S, Hadavi M. A new biocompatible COF-MCM nanoporous hybrid DDS for pH-controlled delivery of curcumin. Sci Rep 2024; 14:32077. [PMID: 39738692 DOI: 10.1038/s41598-024-83614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
A novel polyimide-bridge covalent organic framework-based (PI-COF) hybrid was synthesized through simple green chemistry between PI-COF and MCM-NH2 monomers as a pH-sensitive anticancer curcumin (C) delivery system. The synthesized nanohybrid was crystalline in nature with an improved surface area and pore volume compared to the base COF, certified by powder X-ray diffraction spectroscopy and Brunauer-Emmett-Teller technique. Kinetically controlled and sustained curcumin release profiles were investigated using the as-prepared curcumin-loaded drug delivery systems (C@DDSs) in neutral and acidic pH media. C-loaded hybrid nanostructure prepared via the solvent-free drug loading process displayed a high entrapment efficiency (35.96%) and improved release in the acidic environment specific to cancer cells (pH = 4.5: 36.8%, pH = 7.4: 15.27%). In conclusion, we illustrated the utility of C@DDS as an in vitro drug delivery system in MDA-MB-231 cells. C@DDSs represented the time-dependent release of curcumin followed by cell death. Therefore, the reported PI-COF/MCM-NH2 system can be considered a new biocompatible carrier in COF research as a sensitive drug delivery system.
Collapse
Affiliation(s)
- R Foulady-Dehaghi
- Faculty of Chemistry, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Sh Sohrabnezhad
- Faculty of Chemistry, University of Guilan, P.O. Box 1914, Rasht, Iran.
| | - M Hadavi
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran
| |
Collapse
|
4
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Eslaminejad T, Nematollahi-Mahani SN, Sargazi ML, Ansari M, Mirzaie V. Evaluating the effects of curcumin nano-chitosan on miR-221 and miR-222 expression and Wnt/β-catenin pathways in MCF-7, MDA-MB-231 and SKBR3 cell lines. Diagn Pathol 2024; 19:35. [PMID: 38365810 PMCID: PMC10870642 DOI: 10.1186/s13000-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common diseases worldwide that affects women of reproductive age. miR-221 and miR-222 are two highly homogeneous microRNAs that play pivotal roles in many cellular processes and regulate the Wnt/β-catenin signaling pathway. Curcumin (CUR), a yellow polyphenolic compound, targets numerous signaling pathways relevant to cancer therapy. The main aim of this study was to compare the ability of chitosan curcumin nanoparticle (CC-CUR) formulation with the curcumin in modulating miR-221 and miR-222 expression through Wnt/β-catenin signaling pathway in MCF-7, MDA-MB-231 and SK-BR-3 breast cancer cell lines. METHOD Chitosan-cyclodextrin-tripolyphosphate containing curcumin nanoparticles (CC-CUR) were prepared. Cytotoxicity of the CUR and CC-CUR was evaluated. Experimental groups including CC-CUR, CUR and negative control were designed. The expression of miR-221 and miR-222 and Wnt/β-catenin pathway genes was measured. RESULTS The level of miR-221 and miR-222 and β-catenin genes decreased in MCF-7 and MDA-MB-231 cells and WIF1 gene increased in all cells in CC-CUR group. However, the results in SK-BR-3 cell line were unexpected; since miRs and WIF1 gene expressions were increased following CC-CUR administration and β-catenin decreased by administration of CUR. CONCLUSION Although the composite form of curcumin decreased the expression of miR-221 and miR-222 in MCF-7 and MDA cells, with significant decreasing of β-catenin and increasing of WIF1 gene in almost all three cell lines, we can conclude than this formulation exerts its effect mainly through the Wnt/β-catenin pathway. These preliminary findings may pave the way for the use of curcumin nanoparticles in the treatment of some known cancers.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Marzieh Lotfian Sargazi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Banik B, Ashokan A, Choi JH, Surnar B, Dhar S. Platin- C containing nanoparticles: a recipe for the delivery of curcumin-cisplatin combination chemotherapeutics to mitochondria. Dalton Trans 2023; 52:3575-3585. [PMID: 36723189 DOI: 10.1039/d2dt03149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The success story of cisplatin spans over six decades now and yet it continues to be the key player in most chemotherapeutic regimens. Numerous efforts have been made to improve its efficacy, address its shortcomings, and overcome drug resistance. One such strategy is to develop new platinum(IV)-based prodrugs with functionally active ligands to deliver combination therapeutics. This strategy not only enables the drug candidate to access multiple drug targets but also enhances the kinetic inertness of platinum complexes and thereby ensures greater accumulation of active drugs at the target site. We report the synthesis of Platin-C, a platinum(IV)-based cisplatin prodrug tethered to the active component of ancient herbal medicine, curcumin, as one of the axial ligands. This combination complex showed improved chemotherapeutic efficacy in cisplatin resistant A2780/CP70 cell lines compared with the individual components. An amine-terminated biodegradable polymer was suitably functionalized with the triphenylphosphonium (TPP) cation to obtain a mitochondria-directed drug delivery platform. Quantification of Platin-C loading into these NPs using complementary techniques employing curcumin optical properties in high-performance liquid chromatography and platinum-based inductively coupled plasma mass spectrometry evidenced efficacious payload incorporation resulting in functional activities of both the components. Stability studies for a period of one week indicated that the NPs remain stable, enabling substantial loading and controlled release of the prodrug. The targeting nanoparticle (NP) platform was utilized to deliver Platin-C primarily in the mitochondrial network of cancer cells as monitored using confocal microscopy employing the green fluorescence of the curcumin pendant. Our studies showed that amine terminated NPs were relatively less efficient in their ability to target mitochondria despite being positively charged. This re-validated the importance of lipophilic positively charged TPP surface functionalities to successfully target cellular mitochondria. We validated the capabilities of Platin-C and its mitochondria-targeting nanoparticles towards inflicting mitochondria-directed activity in cisplatin-sensitive and cisplatin-resistant cell lines. Furthermore, our studies also demonstrated the effectiveness of Platin-C incorporated targeting NPs in attenuating cellular inflammatory markers by utilizing the curcumin component. This study advances our understanding of the cisplatin prodrug approach to combine chemotherapeutic and inflammatory effects in accessing combinatory pathways.
Collapse
Affiliation(s)
- Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Nano Therapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, Cotton University, Panbazar, Guwahati-781001, Assam, India
| | - Akash Ashokan
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joshua H Choi
- Nano Therapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Nano Therapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
8
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Manatunga D, Jayasinghe JAB, Sandaruwan C, De Silva RM, De Silva KMN. Enhancement of Release and Solubility of Curcumin from Electrospun PEO-EC-PVP Tripolymer-Based Nanofibers: A Study on the Effect of Hydrogenated Castor Oil. ACS OMEGA 2022; 7:37264-37278. [PMID: 36312427 PMCID: PMC9608420 DOI: 10.1021/acsomega.2c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 05/15/2023]
Abstract
This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.
Collapse
Affiliation(s)
- Danushika.
C. Manatunga
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Department
of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama10206, Sri Lanka
| | - J. Asanka Bandara Jayasinghe
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Chanaka Sandaruwan
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Rohini M. De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| | - K. M. Nalin De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| |
Collapse
|
10
|
Tokmedash MA, Seyyedizadeh E, Balouchi EN, Salehi Z, Ardestani MS. Synthesis of smart carriers based on tryptophan-functionalized magnetic nanoparticles and its application in 5- Fluorouracil delivery. Biomed Mater 2022; 17. [PMID: 35609617 DOI: 10.1088/1748-605x/ac7307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Multifunctional nanocarriers, specifically for tumor targeting and traceable features, have been increasingly considered in cancer therapies. Herein, a novel targeting agent (TA), tryptophan(TRP), was proposed for the synthesis of functionalized APTES-iron oxide nanoparticles using two methods, creating a smart drug delivery system (DDS). In one method, two-step, glutaraldehyde (GA) as a linker, bonded TRP and amino-functionalized magnetite (AMFM), and in the second method, one step, TRP binding was carried out by (3-dimethyl aminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC)/ N-hydroxysuccinimide ester (NHS). The synthesis yield of the second method was 7% higher than the first method. After synthesizing DDS, 5-Fluorouracil (5-FU) was loaded on nanocarriers and was observed that TRP functionalized nanoparticles by GA have better loading efficiency, which was 50% greater than the product from the one-step method. A pH-sensitive release profile was also studied for 5-FU/DDS with the release of almost 75% and 50% at pH 5.5 and 7.4, respectively. To analyze the biological aspects of nanocarriers, human breast cancer, MCF-7, and embryonic kidney, HEK293, cell lines were used for cellular uptake and MTT assays. In-vitro studies confirmed that TRP can act as a TA as its cellular uptake through cancerous cells was 40% greater than normal cells, and the MTT assay confirmed that using DDS can increase and decrease the cell viability of normal cells and cancerous cells, respectively, compared to free drug. Therefore, it was concluded that advanced nano-assembly is a great candidate for breast cancer cell-targeted delivery.
Collapse
Affiliation(s)
| | - Elham Seyyedizadeh
- Tehran University, 16 Azar Street, Tehran, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Elham Nezami Balouchi
- University of Tehran, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Zeinab Salehi
- University of Tehran, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Tehran University of Medical Sciences, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| |
Collapse
|
11
|
Wang Y, Zhang B, Shen X, Li Q, Su F, Li S. Biocompatibility, drug release, and anti‐tumor effect of
pH
‐sensitive micelles prepared from poly(2‐ethyl‐2‐oxazoline)‐poly(
DL
‐lactide) block copolymers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuandou Wang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Baogang Zhang
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao China
| | - Xin Shen
- Research & Development Department CP Pharmaceutical (Qingdao) Co., Ltd. Qingdao China
- Cancer Institute The Affiliated Hospital of Qingdao University Qingdao China
| | - Qian Li
- Cancer Institute The Affiliated Hospital of Qingdao University Qingdao China
| | - Feng Su
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao China
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
12
|
The Drug Release Kinetics and Anticancer Activity of the GO/PVA-Curcumin Nanostructures: The Effects of the Preparation Method and the GO Amount. J Pharm Sci 2021; 110:3715-3725. [PMID: 34352270 DOI: 10.1016/j.xphs.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/26/2023]
Abstract
The Graphene Oxide (GO) incorporated polyvinyl alcohol/sodium alginate (PVA-SA) composites with curcumin were prepared by the solvent casting and electro-spinning techniques. The GO was incorporated into PVA-SA nano-fiber and film matrixes, and the performance of these nano-composites as drug carriers was investigated. The effects of production method (film or mat) and GO amount on the water absorption properties and delivery of curcumin behaviors were investigated. The swelling and releasing were studied at the specific interval times in deionized water and phosphate buffer solution (pH = 7.4), respectively. The release kinetics was evaluated to find a suitable mechanism of the release. Finally, the anticancer activity of composite nano-fibers on the cancer cells was investigated. The XRD and FTIR analyses confirmed nanocomposites structures, and the successful incorporation was shown by scanning electron microscopy (SEM). The results showed that addition of the GO to PVA/SA decreased swelling ratio of the films (up to 31%) and increased the swelling ratio of the mats (up to 37.5%). However, for both film and mat, increasing of the GO amount reduced the curcumin release. Drug release decreasing up to 22.5% was observed for film, while a very high release decreasing up to about 70% was seen for mat. Also, both film and mat structures showed significant anti-cancer activity on MCF-7 cells. The lower cell viability was about 40 and 30% for film and mat, respectively. The kinetics evaluations suggested a Korsmeyer-Peppas model and Fickian controlled drug release.
Collapse
|
13
|
Liu H, Yuan M, Liu Y, Guo Y, Xiao H, Guo L, Liu F. Self-Monitoring and Self-Delivery of Self-Assembled Fluorescent Nanoparticles in Cancer Therapy. Int J Nanomedicine 2021; 16:2487-2499. [PMID: 33824587 PMCID: PMC8018427 DOI: 10.2147/ijn.s294279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Due to the shortcomings of nanocarriers, the development of carrier-free nanodelivery systems has attracted more and more attention in cancer treatment. However, there are few studies on carrier-free nanosystems that can simultaneously achieve monitoring functions. Here a multifunctional carrier-free nanosystem loaded with curcumin and irinotecan hydrochloride was established for the treatment and monitoring of gastric cancer. Methods In this study, an irinotecan hydrochloride-curcumin nanosystem in the early stage (the system is named SICN) was prepared. Based on the fluorescence of curcumin, flow cytometry, laser confocal microscopy, and zebrafish fluorescence imaging were used to study the monitoring function of SICN in vivo and in vitro. In addition, HGC-27 human gastric cancer cells were used to study SICN cytotoxicity. Results Flow cytometry and zebrafish fluorescence imaging monitoring results showed that the uptake of SICN was significantly higher than free curcumin, and the excretion rate was lower. SICN had higher accumulation and retention in cells and zebrafish. Laser confocal microscopy monitoring results showed that SICN was internalized into HGC-27 cells through multiple pathways, including macropinocytosis, caveolin, and clathrin-mediated and clathrin -independent endocytosis, and distributed intracellularly throughout the whole cytoplasm, including lysosomes and Golgi apparatus. In vitro cell experiments showed that SICN nanoparticles were more toxic than single components, and HGC-27 cells had more absorption and higher toxicity to nanoparticles under slightly acidic conditions. Conclusion SICN is a promising carrier-free nanoparticle, and the combination of two single-component therapies can exert a synergistic antitumor effect. When exposed to a tumor acidic environment, SICN showed stronger cytotoxicity due to charge conversion. More importantly, the nanoparticles’ self-monitoring function has been developed, opening up new ideas for combined tumor therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, People's Republic of China
| | - Minghao Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, People's Republic of China
| | - Yushi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, People's Republic of China
| | - Yiping Guo
- Quantitative and Systems Biology Program, University of California, Merced, CA, 95343, USA
| | - Haijun Xiao
- Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, 76001, Czech Republic
| | - Li Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, People's Republic of China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, People's Republic of China
| |
Collapse
|