1
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
2
|
Parker JL, Mindell JA, Newstead S. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 2014; 3. [PMID: 25457052 PMCID: PMC4271188 DOI: 10.7554/elife.04273] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/01/2014] [Indexed: 01/30/2023] Open
Abstract
Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joseph A Mindell
- Membrane Transport Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Walther TH, Ulrich AS. Transmembrane helix assembly and the role of salt bridges. Curr Opin Struct Biol 2014; 27:63-8. [DOI: 10.1016/j.sbi.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
4
|
Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, Saroglia M. PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. SPRINGERPLUS 2013; 2:17. [PMID: 23449729 PMCID: PMC3579422 DOI: 10.1186/2193-1801-2-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
The expression and regulation of intestinal oligopeptide transporter (PepT)-1 when vegetable sources are used as a substitute for fish meal in the diet of marine fish has not yet been explored. In the present study, as part of our ongoing work on elucidating PepT1 gene expression in relation to different dietary treatments, we have now isolated and deposited in Genbank database (accession no. GU733710) a cDNA sequence representing the PepT1 in the sea bream (Sparus aurata). The “de novo” prediction of the three-dimensional structure of PepT1 protein is presented. We also analyzed diet-induced changes in the expression of PepT1 mRNA via real-time RT-PCR using the standard curve method. Sea bream were fed for 140 days with one of the following four diet formulations (43% protein/21% lipid): a control fast growth-promoting diet (C), and three diets with the same formulation but in which 15% of the fish meal was substituted by protein concentrates either from lupine (LPC), chick pea (CPC), or green pea (PPC). Fish fed PPC had significantly (p < 0.05) lower levels of PepT1 transcripts in the proximal intestine than the controls, whereas PepT1 transcript levels in fish fed LPC or CPC were not significantly different from the controls. Although growth was similar between fish fed with different diets during the first 72 days of feeding, growth of the fish fed with PPC was reduced during the second part of the trial and was significantly (p < 0.05) lower than fish fed LPC and CPC diets by the end of the experiment. Correlation between these results and fish growth performances highlights that the intestinal PepT1 mRNA level may serve as a useful marker of the dietary protein quality and absorption efficiency.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3 - 21100, Varese, Italy ; Inter-University Centre for Research in Protein Biotechnologies "The Protein Factory"- Polytechnic University of Milan and University of Insubria, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Terada T, Inui KI. Recent Advances in Structural Biology of Peptide Transporters. CURRENT TOPICS IN MEMBRANES 2012. [DOI: 10.1016/b978-0-12-394316-3.00008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Bucking C, Schulte PM. Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:379-87. [PMID: 22227314 DOI: 10.1016/j.cbpa.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 12/17/2022]
Abstract
Expression and function of the oligopeptide transporter PepT1 in response to changes in environmental salinity have received little study despite the important role that dipeptides play in piscine nutrition. We cloned and sequenced two novel full-length cDNAs that encode Fundulus heteroclitus PepT1-type oligopeptide transporters, and examined their expression and functional properties in freshwater- and seawater-acclimated fish and in response to fasting and re-feeding. Phylogenetic analysis of vertebrate SLC15A1 sequences confirms the presence of two PepT1 isoforms, named SLC15A1a and SLC15A1b, in fish. Similar to other vertebrate SLC15A1s, these isoforms have 12 transmembrane domains, and amino acids essential for PepT1 function are conserved. Expression analysis revealed novel environment-specific expression of the SLC15A1 isoforms in F. heteroclitus, with only SLC15A1b expressed in seawater-acclimated fish, and both isoforms expressed in freshwater-acclimated fish. Fasting and re-feeding induced changes in the expression of SLC15A1a and SLC15A1b mRNA. Short-term fasting resulted in up-regulation of PepT1 mRNA levels, while prolonged fasting resulted in down-regulation. The resumption of feeding resulted in up-regulation of PepT1 above pre-fasted levels. Experiments using the in vitro gut sac technique suggest that the PepT1 isoforms differ in functional characteristics. An increased luminal pH resulted in decreased intestinal dipeptide transport in freshwater-acclimated fish but suggested an increased dipeptide transport in seawater-acclimated fish. Overall, this is the first evidence of multiple isoforms of PepT1 in fish whose expression is environmentally dependent and results in functional differences in intestinal dipeptide transport.
Collapse
Affiliation(s)
- Carol Bucking
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
7
|
Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A. Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. Cell Mol Life Sci 2011; 68:2961-75. [PMID: 21181229 PMCID: PMC11115064 DOI: 10.1007/s00018-010-0604-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The functional and structural basis of reverse operation of PepT1 has been studied in Xenopus oocytes expressing the wild-type and mutated forms of this protein. Using brief pulses from a negative holding potential, wild-type and Arg282 mutants exhibit outward currents in the presence of Gly-Gln. The reversal potential of these currents is affected by both pH and substrate concentration, confirming coupled transport in the wild type and in the mutants as well. Long-lasting voltage and current-clamp experiments show that the outward currents are only temporary, and reflect accumulation and/or depletion effects near the membrane. The ability to operate in reverse mode was confirmed in all isoforms by intracellular injection of substrate. The role of Arg282 and Asp341 in the reverse transport was also investigated using charged substrates. Positive Lys-Gly (but not Gly-Lys) showed enhanced transport currents in the Arg282 mutants. In contrast, negative Gly-Asp and Asp-Gly elicited modest currents in all isoforms.
Collapse
Affiliation(s)
- Maria Daniela Renna
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Ayodele Stephen Oyadeyi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| | - Gabor Kottra
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Antonio Peres
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
8
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
9
|
Bossi E, Renna MD, Sangaletti R, D'Antoni F, Cherubino F, Kottra G, Peres A. Residues R282 and D341 act as electrostatic gates in the proton-dependent oligopeptide transporter PepT1. J Physiol 2010; 589:495-510. [PMID: 21115649 DOI: 10.1113/jphysiol.2010.200469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The oligopeptide transporter PepT1 is a protein found in the membrane of the cells of the intestinal walls, and represents the main route through which proteic nutrients are absorbed by the organism. Along the polypeptidic chain of this protein, two oppositely charged amino acids, an arginine in position 282 and an aspartate in position 341 of the sequence, have been hypothesised to form a barrier in the absorption pathway. In this paper we show that appropriate mutations of these amino acids change the properties of PepT1 in a way that confirms that these parts of the protein indeed act as an electrostatic gate in the transport process. The identification of the structural basis of the functional mechanism of this transporter is important because, in addition to its role in nutrient uptake, PepT1 represents a major pathway for the absorption of several therapeutic drugs.
Collapse
Affiliation(s)
- Elena Bossi
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Xu L, Li Y, Haworth IS, Davies DL. Functional role of the intracellular loop linking transmembrane domains 6 and 7 of the human dipeptide transporter hPEPT1. J Membr Biol 2010; 238:43-9. [PMID: 21104182 DOI: 10.1007/s00232-010-9317-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/29/2010] [Indexed: 01/02/2023]
Abstract
The human intestinal di-/tripeptide transporter (hPEPT1) is a 12-transmembrane protein that facilitates transport of peptides from the intestine into the circulation. hPEPT1 is also an important target in oral delivery of drugs, but mechanistic and structural data for the protein are limited. In particular, there is little information on the function of the loops of the transporter. In this study, we show that mutation of several charged residues in the largest intracellular loop of hPEPT1 (loop 6-7, amino acids 224-278) significantly reduces hPEPT1 function. This loop has an asymmetric distribution of charged residues, with only positive charges in the N-terminal half and all five negative charges in the loop located in a small part of the C-terminal half. Point mutagenesis to alanine of three positive residues in the N-terminal half of loop 6-7 and four negative residues in the C-terminal half of the loop significantly reduced glycylsarcosine uptake. E267 was particularly sensitive to mutation, and kinetic analyses of E267A- and E267K-hPEPT1 gave V (max) values 10-fold lower than that for the wild-type protein. Secondary structure prediction suggested that loop 6-7 includes two amphipathic α-helices, with net positive and negative charges, respectively. We interpret the mutagenesis data in terms of interactions of the charged residues in loop 6-7 that may influence conformational changes of hPEPT1 during and after substrate transport.
Collapse
Affiliation(s)
- Liya Xu
- Alcohol and Brain Research Laboratory, Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue PSC 500, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
11
|
Foley DW, Rajamanickam J, Bailey PD, Meredith D. Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 2010; 6:68-78. [PMID: 20370696 DOI: 10.2174/157340910790980133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to being responsible for the majority of absorption of dietary nitrogen, the mammalian proton-coupled di- and tri-peptide transporter PepT1 is also recognised as a major route of drug delivery for several important classes of compound, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Thus there is considerable interest in the PepT1 protein and especially its substrate binding site. In the absence of a crystal structure, computer modelling has been used to try to understand the relationship between PepT1 3D structure and function. Two basic approaches have been taken: modelling the transporter protein, and modelling the substrate. For the former, computer modelling has evolved from early interpretations of the twelve transmembrane domain structure to more recent homology modelling based on recently crystallised bacterial members of the major facilitator superfamily (MFS). Substrate modelling has involved the proposal of a substrate binding template, to which all substrates must conform and from which the affinity of a substrate can be estimated relatively accurately, and identification of points of potential interaction of the substrate with the protein by developing a pharmacophore model of the substrates. Most recently, these two approaches have moved closer together, with the attempted docking of a substrate library onto a homology model of the human PepT1 protein. This article will review these two approaches in which computers have been applied to peptide transport and suggest how such computer modelling could affect drug design and delivery through PepT1.
Collapse
Affiliation(s)
- David W Foley
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | | | | | | |
Collapse
|
12
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
13
|
Ionic Interactions Promote Transmembrane Helix–Helix Association Depending on Sequence Context. J Mol Biol 2010; 396:452-61. [DOI: 10.1016/j.jmb.2009.11.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/19/2009] [Accepted: 11/21/2009] [Indexed: 11/30/2022]
|
14
|
Mutagenesis and cysteine scanning of transmembrane domain 10 of the human dipeptide transporter. Pharm Res 2009; 26:2358-66. [PMID: 19685173 DOI: 10.1007/s11095-009-9952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023]
Abstract
PURPOSE The human dipeptide transporter (hPEPT1) facilitates transport of dipeptides and drugs from the intestine into the circulation. The role of transmembrane domain 10 (TMD10) of hPEPT1 in substrate translocation was investigated using cysteine-scanning mutagenesis with 2-Trimethylammonioethyl methanethiosulfonate (MTSET). METHODS Each amino acid in TMD10 was mutated individually to cysteine, and transport of [(3)H]Gly-Sar was evaluated with and without MTSET following transfection of each mutant in HEK293 cells. Similar localization and expression levels of wild type (WT) hPEPT1 and all mutants were confirmed by immunostaining and biotinylation followed by western blot analysis. RESULTS E595C- and G594C-hPEPT1 showed negligible Gly-Sar uptake. E595D-hPEPT1 showed similar uptake to WT-hPEPT1, but E595K- and E595R-hPEPT1 did not transport Gly-Sar. Double mutations E595K/R282E and E595R/R282E did not restore uptake. G594A-hPEPT1 showed similar uptake to WT-hPEPT1, but G594V-hPEPT1 eliminated uptake. Y588C-hPEPT1 showed uptake of 20% that of WT-hPEPT1. MTSET modification supported a model of TMD10 with an amphipathic helix from I585 to V600 and increased solvent accessibility from T601 to F605. CONCLUSIONS Our results suggest that G594 and E595 in TMD10 of hPEPT1 have key roles in substrate transport and that Y588 may have an important secondary mechanistic role.
Collapse
|
15
|
Pardossi-Piquard R, Yang SP, Kanemoto S, Gu Y, Chen F, Böhm C, Sevalle J, Li T, Wong PC, Checler F, Schmitt-Ulms G, St George-Hyslop P, Fraser PE. APH1 polar transmembrane residues regulate the assembly and activity of presenilin complexes. J Biol Chem 2009; 284:16298-16307. [PMID: 19369254 PMCID: PMC2713549 DOI: 10.1074/jbc.m109.000067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/10/2009] [Indexed: 01/26/2023] Open
Abstract
Complexes involved in the gamma/epsilon-secretase-regulated intramembranous proteolysis of substrates such as the amyloid-beta precursor protein are composed primarily of presenilin (PS1 or PS2), nicastrin, anterior pharynx defective-1 (APH1), and PEN2. The presenilin aspartyl residues form the catalytic site, and similar potentially functional polar transmembrane residues in APH1 have been identified. Substitution of charged (E84A, R87A) or polar (Q83A) residues in TM3 had no effect on complex assembly or activity. In contrast, changes to either of two highly conserved histidines (H171A, H197A) located in TM5 and TM6 negatively affected PS1 cleavage and altered binding to other secretase components, resulting in decreased amyloid generating activity. Charge replacement with His-to-Lys substitutions rescued nicastrin maturation and PS1 endoproteolysis leading to assembly of the formation of structurally normal but proteolytically inactive gamma-secretase complexes. Substitution with a negatively charged side chain (His-to-Asp) or altering the structural location of the histidines also disrupted gamma-secretase binding and abolished functionality of APH1. These results suggest that the conserved transmembrane histidine residues contribute to APH1 function and can affect presenilin catalytic activity.
Collapse
Affiliation(s)
| | - Seung-Pil Yang
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada
| | - Soshi Kanemoto
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada
| | - Yongjun Gu
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada
| | - Fusheng Chen
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada
| | - Christopher Böhm
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada
| | - Jean Sevalle
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire of CNRS, Equipe Labellisée Fondation pour la Recherche Médicale, Valbonne 06560, France
| | - Tong Li
- Departments of Neuroscience and Pathology, John Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Philip C Wong
- Departments of Neuroscience and Pathology, John Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire of CNRS, Equipe Labellisée Fondation pour la Recherche Médicale, Valbonne 06560, France
| | - Gerold Schmitt-Ulms
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | - Peter St George-Hyslop
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada; Department of Medicine (Division of Neurology), Toronto Western Hospital Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Paul E Fraser
- From the Centre for Research in Neurodegenerative Diseases, Toronto, Ontario M5S 3H2, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
16
|
Meredith D. Review. The mammalian proton-coupled peptide cotransporter PepT1: sitting on the transporter-channel fence? Philos Trans R Soc Lond B Biol Sci 2009; 364:203-7. [PMID: 18957377 PMCID: PMC2674094 DOI: 10.1098/rstb.2008.0139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proton-coupled di- and tripeptide transporter PepT1 (SLC15a1) is the major route by which dietary nitrogen is taken up from the small intestine, as well as being the route of entry for important therapeutic (pro)drugs such as the beta-lactam antibiotics, angiotensin-converting enzyme inhibitors and antiviral and anti-cancer agents. PepT1 is a member of the major facilitator superfamily of 12 transmembrane domain transporter proteins. Expression studies in Xenopus laevis on rabbit PepT1 that had undergone site-directed mutagenesis of a conserved arginine residue (arginine282 in transmembrane domain 7) to a glutamate revealed that this residue played a role in the coupling of proton and peptide transport and prevented the movement of non-coupled ions during the transporter cycle. Mutations of arginine282 to other non-positive residues did not uncouple proton-peptide cotransport, but did allow additional ion movements when substrate was added. By contrast, mutations to positive residues appeared to function the same as wild-type. These findings are discussed in relation to the functional role that arginine282 may play in the way PepT1 operates, together with structural information from the homology model of PepT1 based on the Escherichia coli lactose permease crystal structure.
Collapse
Affiliation(s)
- David Meredith
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK.
| |
Collapse
|
17
|
Links JLS, Kulkarni AA, Davies DL, Lee VHL, Haworth IS. Cysteine scanning of transmembrane domain three of the human dipeptide transporter: Implications for substrate transport. J Drug Target 2008; 15:218-25. [PMID: 17454359 DOI: 10.1080/10611860701267491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The human intestinal dipeptide transporter (hPepT1) transports dipeptides and pharmacologically active drugs from the intestine to the blood. The role of transmembrane domain 3 (TMD3) of hPepT1 was studied using cysteine-scanning mutagenesis and methane thiosulfonate (MTS) cysteine modification. Each amino acid in TMD3 was individually mutated to a cysteine and Gly-Sar uptake by each mutated and modified transporter was determined relative to wild-type hPepT1. Uptake data for mutated transporters modified with the lipid-insoluble cysteine-modifying reagent MTSET suggested tilting of TMD3 relative to the substrate translocation pathway; the extracellular region of TMD3 showed little MTSET reactivity, indicative of solvent inaccessibility, whereas the intracellular part of TMD3 was relatively solvent accessible. Modification at 10 positions of TMD3 with MTSEA, a lipid-soluble cysteine-modifying reagent, gave unusual and statistically significant increases in Gly-Sar uptake relative to untreated mutants. We interpret these data in terms of the spatial properties of the hPepT1 substrate translocation channel and possible interactions of TMD3 with other transmembrane domains.
Collapse
Affiliation(s)
- Jennifer L S Links
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121, USA
| | | | | | | | | |
Collapse
|
18
|
Li K, Xu L, Kulkarni AA, Perkins DI, Haworth IS, Davies DL. Ethanol inhibits functional activity of the human intestinal dipeptide transporter hPepT1 expressed in Xenopus oocytes. Alcohol Clin Exp Res 2008; 32:777-84. [PMID: 18336632 DOI: 10.1111/j.1530-0277.2008.00636.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pathological effects of high alcohol (ethanol) consumption on gastrointestinal and hepatic systems are well recognized. However, the effects of ethanol intake on gastric and intestinal absorption and transport systems remain unclear. The present study investigates the effects of ethanol on the human peptide transporter 1 (hPepT1) which mediates the transport of di-and tripeptides as well as several orally administered peptidomimetic drugs such as beta-lactam antibiotics (e.g., penicillin), angiotensin-converting enzyme inhibitors, the anti-neoplastic agent bestatin, and prodrugs of acyclovir. METHODS Xenopus oocytes were injected with hPepT1 cRNA and incubated for 3 to 10 days. Currents induced by glycyl-sarcosine (Gly-Sar), Ala-Ala (dipeptides), penicillin and enalapril measured in the presence or absence of ethanol were determined using an 8-channel 2-electrode voltage clamp system, with a membrane potential of -70 mV and 11 voltage steps of 100 milliseconds (from +50 mV to -150 mV in -20 mV increments). RESULTS Ethanol (200 mM) inhibited Gly-Sar and Ala-Ala currents by 42 and 30%, respectively, with IC(50)s of 184 and 371 mM, respectively. Ethanol reduced maximal transport capacity (I(max)) of hPepT1 for Gly-Sar without affecting Gly-Sar binding affinity (K(0.5) and Hill coefficient). Penicillin- and enalapril-induced currents were significantly less than those induced by dipeptides and were not inhibited by ethanol. CONCLUSION Ethanol significantly reduced transport of dipeptides via a reduction in transport capacity, rather than competing for binding sites in hPepT1. Ethanol inhibition or alteration of transport function may be a primary causative factor contributing to both the nutritional deficits as well as the immunological deficiencies that many alcoholics experience including alcohol liver disease and brain damage.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Pieri M, Hall D, Price R, Bailey P, Meredith D. Site-directed mutagenesis of Arginine282 suggests how protons and peptides are co-transported by rabbit PepT1. Int J Biochem Cell Biol 2007; 40:721-30. [PMID: 18037334 PMCID: PMC2267855 DOI: 10.1016/j.biocel.2007.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 11/02/2022]
Abstract
The mammalian proton-coupled peptide transporter PepT1 is the major route of uptake for dietary nitrogen, as well as the oral absorption of a number of drugs, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Here we have used site-directed mutagenesis to investigate further the role of conserved charged residues in transmembrane domains. Mutation of rabbit PepT1 arginine282 (R282, transmembrane domain 7) to a positive (R282K) or physiologically titratable residue (R282H), resulted in a transporter with wild-type characteristics when expressed in Xenopus laevis oocytes. Neutral (R282A, R282Q) or negatively charged (R282D, R282E) substitutions gave a transporter that was not stimulated by external acidification (reducing pH(out) from 7.4 to 5.5) but transported at the same rate as the wild-type maximal rate (pH(out) 5.5); however, only the R282E mutation was unable to concentrate substrate above the extracellular level. All of the R282 mutants showed trans-stimulation of efflux comparable to the wild-type, except R282E-PepT1 which was faster. A conserved negatively charged residue, aspartate341 (D341) in transmembrane domain 8 was implicated in forming a charge pair with R282, as R282E/D341R- and R282D/D341R-PepT1 had wild-type transporter characteristics. Despite their differences in ability to accumulate substrate, both R282E- and R282D-PepT1 showed an increased charge:peptide stoichiometry over the wild-type 1:1 ratio for the neutral dipeptide Gly-l-Gln, measured using two-electrode voltage clamp. This extra charge movement was linked to substrate transport, as 4-aminobenzoic acid, which binds but is not translocated, did not induce membrane potential depolarisation in R282E-expressing oocytes. A model is proposed for the substrate binding/translocation process in PepT1.
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|