1
|
The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers (Basel) 2021; 13:cancers13051072. [PMID: 33802353 PMCID: PMC7959315 DOI: 10.3390/cancers13051072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The rapid development of diagnostic and therapeutic methods of the cancer treatment causes that these diseases are becoming better known and the fight against them is more and more effective. Substantial contribution in this development has nuclear medicine that enables very early cancer diagnosis and early start of the so-called targeted therapy. This therapeutic concept compared to the currently used chemotherapy, causes much fewer undesirable side effects, due to targeting a specific lesion in the body. This review article discusses the possible applications of radionuclide-labelled tracers (peptides, antibodies or synthetic organic molecules) that can visualise cancer cells through pathological blood vessel system in close tumour microenvironment. Hence, at a very early step of oncological disease, targeted therapy can involve in tumour formation and growth. Abstract One approach to anticancer treatment is targeted anti-angiogenic therapy (AAT) based on prevention of blood vessel formation around the developing cancer cells. It is known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process; hence, application of angiogenesis inhibitors can be an effective approach in anticancer combination therapeutic strategies. Currently, several types of molecules have been utilised in targeted VEGF/VEGFR anticancer therapy, including human VEGF ligands themselves and their derivatives, anti-VEGF or anti-VEGFR monoclonal antibodies, VEGF binding peptides and small molecular inhibitors of VEGFR tyrosine kinases. These molecules labelled with diagnostic or therapeutic radionuclides can become, respectively, diagnostic or therapeutic receptor radiopharmaceuticals. In targeted anti-angiogenic therapy, diagnostic radioagents play a unique role, allowing the determination of the emerging tumour, to monitor the course of treatment, to predict the treatment outcomes and, first of all, to refer patients for AAT. This review provides an overview of design, synthesis and study of radiolabelled VEGF/VEGFR targeting and imaging agents to date. Additionally, we will briefly discuss their physicochemical properties and possible application in combination targeted radionuclide tumour therapy.
Collapse
|
2
|
Ayat NR, Vaidya A, Yeung GA, Buford MN, Hall RC, Qiao PL, Yu X, Lu ZR. Effective MR Molecular Imaging of Triple Negative Breast Cancer With an EDB-Fibronectin-Specific Contrast Agent at Reduced Doses. Front Oncol 2019; 9:1351. [PMID: 31850230 PMCID: PMC6901824 DOI: 10.3389/fonc.2019.01351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/15/2019] [Indexed: 01/29/2023] Open
Abstract
MR molecular imaging (MRMI) of abundant oncogenic biomarkers in tumor microenvironment has the potential to provide precision cancer imaging in high resolution. Extradomain-B fibronectin (EDB-FN) is an oncogenic extracellular matrix protein, highly expressed in aggressive triple negative breast cancer. A targeted macrocyclic gadolinium-based contrast agent (GBCA) ZD2-N3-Gd(HP-DO3A) (MT218), specific to EDB-FN, was developed for MRMI of aggressive breast cancer. The effectiveness of different doses of MT218 for MRMI was tested in MDA-MB-231 and Hs578T human triple negative breast cancer models. At clinical dose of 0.1 and subclinical dose of 0.04 mmol Gd/kg, MT218 rapidly bound to the extracellular matrix EDB-FN and produced robust tumor contrast enhancement in both the tumor models, as early as 1-30 min post-injection. Substantial tumor enhancement was also observed in both the models with MT218 at doses as low as 0.02 mmol Gd/kg, which was significantly better than the clinical agent Gd(HP-DO3A) at 0.1 mmol Gd/kg. Little non-specific enhancement was observed in the normal tissues including liver, spleen, and brain for MT218 at all the tested doses, with renal clearance at 30 min. These results demonstrate that MRMI with reduced doses of MT218 is safe and effective for sensitive and specific imaging of aggressive breast cancers.
Collapse
Affiliation(s)
- Nadia R. Ayat
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Amita Vaidya
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Grace A. Yeung
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Megan N. Buford
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ryan C. Hall
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Peter L. Qiao
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Yu
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. RADIOLOGIA 2018; 60:332-346. [PMID: 29807678 DOI: 10.1016/j.rx.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
4
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. Clin Transl Oncol 2017; 20:837-852. [PMID: 29256154 PMCID: PMC5996017 DOI: 10.1007/s12094-017-1795-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision-making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
5
|
Jansen JFA, Parra C, Lu Y, Shukla-Dave A. Evaluation of Head and Neck Tumors with Functional MR Imaging. Magn Reson Imaging Clin N Am 2016; 24:123-133. [PMID: 26613878 DOI: 10.1016/j.mric.2015.08.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Head and neck cancer is one of the most common cancers worldwide. MR imaging-based diffusion and perfusion techniques enable the noninvasive assessment of tumor biology and physiology, which supplement information obtained from standard structural scans. Diffusion and perfusion MR imaging techniques provide novel biomarkers that can aid monitoring in pretreatment, during treatment, and posttreatment stages to improve patient selection for therapeutic strategies; provide evidence for change of therapy regime; and evaluate treatment response. This review discusses pertinent aspects of the role of diffusion and perfusion MR imaging and computational analysis methods in studying head and neck cancer.
Collapse
Affiliation(s)
- Jacobus F A Jansen
- Department of Radiology, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, The Netherlands.
| | - Carlos Parra
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yonggang Lu
- Department of Radiation Oncology, University of Washington, 4921 Parkview Pl, St Louis, MO 63110, USA
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
6
|
|
7
|
Multiparametric monitoring of early response to antiangiogenic therapy: a sequential perfusion CT and PET/CT study in a rabbit VX2 tumor model. ScientificWorldJournal 2014; 2014:701954. [PMID: 25383376 PMCID: PMC4213998 DOI: 10.1155/2014/701954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To perform dual analysis of tumor perfusion and glucose metabolism using perfusion CT and FDG-PET/CT for the purpose of monitoring the early response to bevacizumab therapy in rabbit VX2 tumor models and to assess added value of FDG-PET to perfusion CT. METHODS Twenty-four VX2 carcinoma tumors implanted in bilateral back muscles of 12 rabbits were evaluated. Serial concurrent perfusion CT and FDG-PET/CT were performed before and 3, 7, and 14 days after bevacizumab therapy (treatment group) or saline infusion (control group). Perfusion CT was analyzed to calculate blood flow (BF), blood volume (BV), and permeability surface area product (PS); FDG-PET was analyzed to calculate SUVmax, SUVmean, total lesion glycolysis (TLG), entropy, and homogeneity. The flow-metabolic ratio (FMR) was also calculated and immunohistochemical analysis of microvessel density (MVD) was performed. RESULTS On day 14, BF and BV in the treatment group were significantly lower than in the control group. There were no significant differences in all FDG-PET-derived parameters between both groups. In the treatment group, FMR prominently decreased after therapy and was positively correlated with MVD. CONCLUSIONS In VX2 tumors, FMR could provide further insight into the early antiangiogenic effect reflecting a mismatch in intratumor blood flow and metabolism.
Collapse
|
8
|
Liu Y, Feshitan JA, Wei MY, Borden MA, Yuan B. Ultrasound-modulated fluorescence based on fluorescent microbubbles. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:085005. [PMID: 25104407 PMCID: PMC4407672 DOI: 10.1117/1.jbo.19.8.085005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 05/15/2023]
Abstract
Ultrasound-modulated fluorescence (UMF) imaging has been proposed to provide fluorescent contrast while maintaining ultrasound resolution in an optical-scattering medium (such as biological tissue). The major challenge is to extract the weakly modulated fluorescent signal from a bright and unmodulated background. UMF was experimentally demonstrated based on fluorophore-labeled microbubble contrast agents. These contrast agents were produced by conjugating N-hydroxysuccinimide (NHS)-ester-attached fluorophores on the surface of amine-functionalized microbubbles. The fluorophore surface concentration was controlled so that a significant self-quenching effect occurred when no ultrasound was applied. The intensity of the fluorescent emission was modulated when microbubbles were oscillated by ultrasound pulses, presented as UMF signal. Our results demonstrated that the UMF signals were highly dependent on the microbubbles' oscillation amplitude and the initial surface fluorophore-quenching status. A maximum of ∼42% UMF modulation depth was achieved with a single microbubble under an ultrasound peak-to-peak pressure of 675 kPa. Further, UMF was detected from a 500-μm tube filled with contrast agents in water and scattering media with ultrasound resolution. These results indicate that ultrasound-modulated fluorescent microbubble contrast agents can potentially be used for fluorescence-based molecular imaging with ultrasound resolution in the future.
Collapse
Affiliation(s)
- Yuan Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| | - Jameel A. Feshitan
- University of Colorado, Department of Mechanical Engineering, Boulder, Colorado 80309-0427, United States
| | - Ming-Yuan Wei
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| | - Mark A. Borden
- University of Colorado, Department of Mechanical Engineering, Boulder, Colorado 80309-0427, United States
| | - Baohong Yuan
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| |
Collapse
|
9
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Weidensteiner C, Allegrini PR, Sticker-Jantscheff M, Romanet V, Ferretti S, McSheehy PMJ. Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells--a preclinical MR study in mice. BMC Cancer 2014; 14:88. [PMID: 24528602 PMCID: PMC3932835 DOI: 10.1186/1471-2407-14-88] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Effective chemotherapy rapidly reduces the spin–lattice relaxation of water protons (T1) in solid tumours and this change (ΔT1) often precedes and strongly correlates with the eventual change in tumour volume (TVol). To understand the biological nature of ΔT1, we have performed studies in vivo and ex vivo with the allosteric mTOR inhibitor, everolimus. Methods Mice bearing RIF-1 tumours were studied by magnetic resonance imaging (MRI) to determine TVol and T1, and MR spectroscopy (MRS) to determine levels of the proliferation marker choline and levels of lipid apoptosis markers, prior to and 5 days (endpoint) after daily treatment with vehicle or everolimus (10 mg/kg). At the endpoint, tumours were ablated and an entire section analysed for cellular and necrotic quantification and staining for the proliferation antigen Ki67 and cleaved-caspase-3 as a measure of apoptosis. The number of blood-vessels (BV) was evaluated by CD31 staining. Mice bearing B16/BL6 melanoma tumours were studied by MRI to determine T1 under similar everolimus treatment. At the endpoint, cell bioluminescence of the tumours was measured ex vivo. Results Everolimus blocked RIF-1 tumour growth and significantly reduced tumour T1 and total choline (Cho) levels, and increased polyunsaturated fatty-acids which are markers of apoptosis. Immunohistochemistry showed that everolimus reduced the %Ki67+ cells but did not affect caspase-3 apoptosis, necrosis, BV-number or cell density. The change in T1 (ΔT1) correlated strongly with the changes in TVol and Cho and %Ki67+. In B16/BL6 tumours, everolimus also decreased T1 and this correlated with cell bioluminescence; another marker of cell viability. Receiver-operating-characteristic curves (ROC) for everolimus on RIF-1 tumours showed that ΔT1 had very high levels of sensitivity and specificity (ROCAUC = 0.84) and this was confirmed for the cytotoxic patupilone in the same tumour model (ROCAUC = 0.97). Conclusion These studies suggest that ΔT1 is not a measure of cell density but reflects the decreased number of remaining viable and proliferating tumour cells due to perhaps cell and tissue destruction releasing proteins and/or metals that cause T1 relaxation. ΔT1 is a highly sensitive and specific predictor of response. This MRI method provides the opportunity to stratify a patient population during tumour therapy in the clinic.
Collapse
|
11
|
Cyran CC, Fu Y, Rogut V, Chaopathomkul B, Wendland MF, Shames DM, Brasch RC. Evaluation of a novel macromolecular cascade-polymer contrast medium for dynamic contrast-enhanced MRI monitoring of antiangiogenic bevacizumab therapy in a human melanoma model. Acad Radiol 2013; 20:1256-63. [PMID: 24029057 DOI: 10.1016/j.acra.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/18/2023]
Abstract
RATIONALE AND OBJECTIVES To assess the applicability of a novel macromolecular polyethylene glycol (PEG)-core gadolinium contrast agent for monitoring early antiangiogenic effects of bevacizumab using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). MATERIALS AND METHODS Athymic rats (n = 26) implanted with subcutaneous human melanoma xenografts underwent DCE-MRI at 2.0 T using two different macromolecular contrast agents. The PEG core cascade polymer PEG12,000-Gen4-(Gd-DOTA)16, designed for clinical development, was compared to the prototype, animal-only, macromolecular contrast medium (MMCM) albumin-(Gd-DTPA)35. The treatment (n = 13) and control (n = 13) group was imaged at baseline and 24 hours after a single dose of bevacizumab (1 mg) or saline to quantitatively assess the endothelial-surface permeability constant (K(PS), μL⋅min⋅100 cm(3)) and the fractional plasma volume (fPV,%), using a two-compartment kinetic model. RESULTS Mean K(PS) values, assessed with PEG12,000-Gen4-(Gd-DOTA)16, declined significantly (P < .05) from 29.5 ± 10 μL⋅min⋅100 cm(3) to 10.4 ± 7.8 μL⋅min⋅100 cm(3) by 24 hours after a single dose of bevacizumab. In parallel, K(PS) values quantified using the prototype MMCM albumin-(Gd-DTPA)35 showed an analogous, significant decline (P < .05) in the therapy group. No significant effects were detected on tumor vascularity or on microcirculatory parameters in the control group between the baseline and the follow-up scan at 24 hours. CONCLUSION DCE-MRI enhanced with the novel MMCM PEG12,000-Gen4-(Gd-DOTA)16 was able to monitor the effects of bevacizumab on melanoma xenografts within 24 hours of a single application, validated by the prototype, animal-only albumin-(Gd-DTPA)35. PEG12,000-Gen4-(Gd-DOTA)16 may be a promising candidate for further clinical development as a macromolecular blood pool contrast MRI agent.
Collapse
Affiliation(s)
- Clemens C Cyran
- Center for Pharmaceutical and Molecular Imaging, Department of Radiology, University of California San Francisco, San Francisco, California; Department of Clinical Radiology, Laboratory for Experimental Radiology, University Hospitals Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 732] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
13
|
Sourbron S, Heilmann M, Walczak C, Vautier J, Schad LR, Volk A. T2*-relaxivity contrast imaging: first results. Magn Reson Med 2012; 69:1430-7. [PMID: 22733703 DOI: 10.1002/mrm.24383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 12/30/2022]
Abstract
In this study, T2*- relaxivity contrast imaging (RCI) is proposed for new contrast generation in MRI. The method produces images of relaxivities r*2,vasc and r*2,EES caused by susceptibility gradients across the vessel walls and cell membranes, respectively. The sensitivity to noise was assessed with a simulation study, and initial results are presented for five colorectal tumor xenografts in nude mice. Simulations show that the new relaxivity parameters are at least as accurate and precise as standard parameters such as plasma volume and interstitial volume. Mean values of both relaxivities were significantly different (r*2,vasc=10.9±2.9 mM(-1) s(-1) and r*2,EES=15.6±2.6 mM(-1) s(-1)). r*2,vasc (r=0.67) and r*2,EES (r=0.52) were weakly correlated with plasma volume and interstitial volume, respectively. Images of r*2,vasc and r*2,EES reveal a different tumor structure than plasma volume and interstitial volume maps. These results suggest that relaxivity contrast imaging is practically feasible and might offer supplementary information compared to dynamic contrast-enhanced-MRI.
Collapse
Affiliation(s)
- Steven Sourbron
- Division of Medical Physics, University of Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Asakawa C, Ogawa M, Fujinaga M, Kumata K, Xie L, Yamasaki T, Yui J, Fukumura T, Zhang MR. Utilization of [11C]phosgene for radiosynthesis of N-(2-{3-[3,5-bis(trifluoromethyl)]phenyl[11C]ureido}ethyl)glycyrrhetinamide, an inhibitory agent for proteasome and kinase in tumors. Bioorg Med Chem Lett 2012; 22:3594-7. [PMID: 22546673 DOI: 10.1016/j.bmcl.2012.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
N-(2-{3-[3,5-Bis(trifluoromethyl)]phenylureido}ethyl)glycyrrhetinamide (2), an ureido-substituted derivative of glycyrrhetinic acid (1), has been reported to display potent inhibitory activity for proteasome and kinase, which are overexpressed in tumors. In this study, we labeled this unsymmetrical urea 2 using [(11)C]phosgene ([(11)C]COCl(2)) as a labeling agent with the expectation that [(11)C]2 could become a positron emission tomography ligand for the imaging of proteasome and kinase in tumors. The strategy for the radiosynthesis of [(11)C]2 was to react hydrochloride of 3,5-bis(trifluoromethyl)aniline (4·HCl) with [(11)C]COCl(2) to possibly give isocyanate [(11)C]6, followed by the reaction of [(11)C]6 with N-(2-aminoethyl)glycyrrhetinamide (3).
Collapse
Affiliation(s)
- Chiharu Asakawa
- Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Figueiras RG, Padhani AR, Goh VJ, Vilanova JC, González SB, Martín CV, Caamaño AG, Naveira AB, Choyke PL. Novel oncologic drugs: what they do and how they affect images. Radiographics 2012; 31:2059-91. [PMID: 22084189 DOI: 10.1148/rg.317115108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted therapies are designed to interfere with specific aberrant biologic pathways involved in tumor development. The main classes of novel oncologic drugs include antiangiogenic drugs, antivascular agents, drugs interfering with EGFR-HER2 or KIT receptors, inhibitors of the PI3K/Akt/mTOR pathway, and hormonal therapies. Cancer cells usurp normal signal transduction pathways used by growth factors to stimulate proliferation and sustain viability. The interaction of growth factors with their receptors activates different intracellular pathways affecting key tumor biologic processes such as neoangiogenesis, tumor metabolism, and tumor proliferation. The response of tumors to anticancer therapy can be evaluated with anatomic response assessment, qualitative response assessment, and response assessment with functional and molecular imaging. Angiogenesis can be measured by means of perfusion imaging with computed tomography and magnetic resonance (MR) imaging. Diffusion-weighted MR imaging allows imaging evaluation of tumor cellularity. The main imaging techniques for studying tumor metabolism in vivo are positron emission tomography and MR spectroscopy. Familiarity with imaging findings secondary to tumor response to targeted therapies may help the radiologist better assist the clinician in accurate evaluation of tumor response to these anticancer treatments. Functional and molecular imaging techniques may provide valuable data and augment conventional assessment of tumor response to targeted therapies. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.317115108/-/DC1.
Collapse
Affiliation(s)
- Roberto García Figueiras
- Department of Radiology, Grupo de Imagen Molecular, Fundación IDICHUS/IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Choupana s/n, 15702 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wei L, Li S, Yang J, Ye Y, Zou J, Wang L, Long R, Zurkiya O, Zhao T, Johnson J, Qiao J, Zhou W, Castiblanco A, Maor N, Chen Y, Mao H, Hu X, Yang JJ, Liu ZR. Protein-based MRI contrast agents for molecular imaging of prostate cancer. Mol Imaging Biol 2011; 13:416-423. [PMID: 20574851 DOI: 10.1007/s11307-010-0342-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study was to demonstrate a novel protein-based magnetic resonance imaging (MRI) contrast agent that has the capability of targeting prostate cancer and which provides high-sensitivity MR imaging in tumor cells and mouse models. PROCEDURE A fragment of gastrin-releasing peptide (GRP) was fused into a protein-based MRI contrast agent (ProCA1) at different regions. MR imaging was obtained in both tumor cells (PC3 and H441) and a tumor mouse model administrated with ProCA1.GRP. RESULTS PC3 and DU145 cells treated with ProCA1.GRPs exhibited enhanced signal in MRI. Intratumoral injection of ProCA1.GRP in a PC3 tumor model displayed enhanced MRI signal. The contrast agent was retained in the PC3 tumor up to 48 h post-injection. CONCLUSIONS Protein-based MRI contrast agent with tumor targeting modality can specifically target GRPR-positive prostate cancer. Intratumoral injection of the ProCA1 agent in the prostate cancer mouse model verified the targeting capability of ProCA1.GRP and showed a prolonged retention time in tumors.
Collapse
Affiliation(s)
- Lixia Wei
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Shunyi Li
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jianhua Yang
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Yiming Ye
- Biotechnology Core Facility Branch, Center for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Jin Zou
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Liya Wang
- Department of Radiology, Emory University, Atlanta, GA, 30322, USA
| | - Robert Long
- Department of Radiology, Emory University, Atlanta, GA, 30322, USA
| | - Omar Zurkiya
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Tiejun Zhao
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Julian Johnson
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jingjuan Qiao
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Wangda Zhou
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Adriana Castiblanco
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Natalie Maor
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Yanyi Chen
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Hui Mao
- Department of Radiology, Emory University, Atlanta, GA, 30322, USA
| | - Xiaoping Hu
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Jenny J Yang
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA.
| | - Zhi-Ren Liu
- Department of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| |
Collapse
|
17
|
Lee CH, Braga L, de Campos ROP, Semelka RC. Hepatic tumor response evaluation by MRI. NMR IN BIOMEDICINE 2011; 24:721-733. [PMID: 21793076 DOI: 10.1002/nbm.1637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/29/2010] [Accepted: 10/07/2010] [Indexed: 05/31/2023]
Abstract
Noninvasive evaluation of hepatic tumor response is necessary to improve the survival rate and quality of life of cancer patients. Among radiologic imaging modalities, MRI plays a significant role in the management of patients with hepatic tumor and is crucial for diagnosis, treatment planning and assessment of response or recurrence, because of its high contrast resolution, lack of ionizing radiation and the possibility of performing functional imaging sequences. This review provides an overview of the MRI findings after various treatments in patients with primary and secondary focal liver malignancies. The imaging methods described focus on the recent trends of using MRI techniques as biomarkers for disease. We also describe the appearance of successful and incomplete response for the various forms of treatment, including transcatheter arterial chemoembolization, ablative therapy, systemic chemotherapy and radiation therapy. Dynamic contrast-enhanced MRI is regarded as an established noninvasive method and potential biomarker for tumor detection, as well as for the characterization of the tumor response. Diffusion-weighted MRI, perfusion-weighted MRI and MRS are also promising functional biomarkers to help select patients for various therapies and to assess the response to treatments. However, further validation and standardization should be performed before their widespread use as imaging biomarkers.
Collapse
Affiliation(s)
- Chang Hee Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
18
|
Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S. Imaging tumor hypoxia by magnetic resonance methods. NMR IN BIOMEDICINE 2011; 24:1-16. [PMID: 21259366 DOI: 10.1002/nbm.1558] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 03/21/2010] [Accepted: 04/01/2010] [Indexed: 05/10/2023]
Abstract
Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.
Collapse
Affiliation(s)
- Jesús Pacheco-Torres
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Institute of Biomedical Research Alberto Sols, CSIC/UAM, c/Arturo Duperier 4, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol 2010; 65:517-21. [PMID: 20541651 DOI: 10.1016/j.crad.2010.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 01/03/2023]
Abstract
Cancers are complex, evolving, multiscale ecosystems that are characterized by profound spatial and temporal heterogeneity. The interactions in cancer are non-linear in that small changes in one variable can have large changes on another. These multiple interacting phenotypes and spatial scales can best be understood with appropriate mathematical and computational models. Imaging is central to this investigation because it can non-destructively and longitudinally characterize spatial variations in the tumour phenotype and environment so that the system dynamics over time can be captured quantitatively.
Collapse
Affiliation(s)
- R J Gillies
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602, USA.
| | | | | | | |
Collapse
|
20
|
Wang H, Liu B, Tian JH, Xu BX, Guan ZW, Qu BL, Liu CB, Wang RM, Chen YM, Zhang JM. Monitoring early responses to irradiation with dual-tracer micro-PET in dual-tumor bearing mice. World J Gastroenterol 2010; 16:5416-23. [PMID: 21086558 PMCID: PMC2988233 DOI: 10.3748/wjg.v16.i43.5416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To monitor the early responses to irradiation in primary and metastatic colorectal cancer (CRC) with 18F-fluorothymidine (18F-FLT) and 18F-fluorodeoxyglucose (18F-FDG) small-animal position emission tomography (micro-PET).
METHODS: The primary and metastatic CRC cell lines, SW480 and SW620, were irradiated with 5, 10 and 20 Gy. After 24 h, the cell cycle phases were analyzed. A dual-tumor-bearing mouse model of primary and metastatic cancer was established by injecting SW480 and SW620 cells into mice. micro-PET with 18F-FLT and 18F-FDG was performed before and 24 h after irradiation with 5, 10 and 20 Gy. The region of interest (ROI) was drawn over the tumor and background to calculate the ratio of tumor to non-tumor (T/NT) in tissues. Immunohistochemical assay and Western blotting were used to examine the levels of integrin β3, Ki-67, vascular endothelial growth factor receptor 2 (VEGFR2) and heat shock protein 27 (HSP27).
RESULTS: The proportion of SW480 and SW620 cells in the G2-M phase was decreased with an increasing radiation dose. The proportion of SW480 cells in the G0-G1 phase was increased from 48.33% ± 4.55% to 87.09% ± 7.43% (P < 0.001) and that of SW620 cells in the S-phase was elevated from 43.57% ± 2.65% to 66.59% ± 7.37% (P = 0.021). In micro-PET study, with increasing dose of radiation, 18F-FLT uptake was significantly reduced from 3.65 ± 0.51 to 2.87 ± 0.47 (P = 0.008) in SW480 tumors and from 2.22 ± 0.42 to 1.76 ± 0.45 (P = 0.026) in SW620 tumors. 18F-FDG uptake in SW480 and SW620 tumors was reduced but not significantly (F = 0.582, P = 0.633 vs F = 0.273, P = 0.845). Dose of radiation was negatively correlated with 18F-FLT uptake in both SW480 and SW620 tumors (r = -0.727, P = 0.004; and r = -0.664, P = 0.009). No significant correlation was found between 18F-FDG uptake and radiation dose in SW480 or SW620 tumors. HSP27 and integrin β3 expression was higher in SW480 than in SW620 tumors. The T/NT ratio for 18F-FLT uptake was positively correlated with HSP27 and integrin β3 expression (r = 0.924, P = 0.004; and r = 0.813, P = 0.025).
CONCLUSION: 18F-FLT is more suitable than 18F-FDG in monitoring early responses to irradiation in both primary and metastatic lesions of colorectal cancer.
Collapse
|
21
|
A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal® dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest New Drugs 2010; 29:1465-74. [PMID: 20499131 DOI: 10.1007/s10637-010-9455-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE 2ME2 (Panzem®) is a non-estrogenic derivative of estradiol with antiproliferative and antiangiogenic activity. Preclinical data support antitumor activity in prostate cancer. This trial evaluated the efficacy of 2ME2 NCD in patients with taxane-refractory, metastatic CRPC. EXPERIMENTAL DESIGN Patients with metastatic CRPC who had progressed on only one prior taxane-based regimen were eligible. All patients received 2ME2 NCD at 1,500 mg orally four times daily, repeated in 28 day cycles. The primary endpoint was progression-free survival at month 6, with a secondary endpoint of PSA response. An exploratory endpoint was metabolic response on FDG-PET imaging. RESULTS A total of 50 pts was planned. The study was terminated after 21 pts when a futility analysis showed the primary endpoint was unlikely to be reached. The median number of cycles on study was 2 (range <1 to 12). Adverse events (AE) of grade ≥3 related to the study drug occurred in 7 unique patients (33%): elevations in liver function tests, fatigue or weakness, gastrointestinal hemorrhage, and hyponatremia. Paired FDG-PET scans were obtained for 11 pts. No metabolic responses were observed. CONCLUSIONS 2ME2 NCD did not appear to have clinically significant activity in this study. 2ME2 NCD was well-tolerated and showed some evidence of biologic activity. Given the aggressive biology in this taxane-refractory population, the potential benefit from a cytostatic agent like 2ME2 might better be realized in the pre-chemotherapy (or rising PSA only) stage of CRPC.
Collapse
|
22
|
Molecular imaging and targeted therapies. Biochem Pharmacol 2010; 80:731-8. [PMID: 20399197 DOI: 10.1016/j.bcp.2010.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/31/2022]
Abstract
Targeted therapeutic and imaging agents are becoming more prevalent, and are used to treat increasingly smaller segments of the patient population. This has lead to dramatic increases in the costs for clinical trials. Biomarkers have great potential to reduce the numbers of patients needed to test novel targeted agents by predicting or identifying non-response early-on and thus enriching the clinical trial population with patients more likely to respond. Biomarkers are characteristics that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers can be used to predict response to specific therapies, predict response regardless of therapy, or to monitor response once a therapy has begun. In terms of drug development, predictive biomarkers have the greatest impact, as they can be used as inclusion criteria for patient segmentation. Prognostic markers are used routinely in clinical practice but do not provide direction for the use of targeted therapies. Imaging biomarkers have distinct advantages over those that require a biopsy sample in that they are "non-invasive" and can be monitored longitudinally at multiple time points in the same patient. This review will examine the role of functional and molecular imaging in predicting response to specific therapies; will explore the advantages and disadvantages of targeting intracellular or extracellular markers; and will discuss the attributes of useful targets and methods for target identification and validation.
Collapse
|
23
|
Biomarqueurs en imagerie pour l’évaluation des nouvelles thérapies anticancéreuses. ONCOLOGIE 2010. [DOI: 10.1007/s10269-010-1870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Broome AM, Bhavsar N, Ramamurthy G, Newton G, Basilion JP. Expanding the utility of beta-galactosidase complementation: piece by piece. Mol Pharm 2010; 7:60-74. [PMID: 19899815 PMCID: PMC2835542 DOI: 10.1021/mp900188e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to image and quantify multiple biomarkers in disease necessitates the development of split reporter fragment platforms. We have divided the beta-galactosidase enzyme into unique, independent polypeptides that are able to reassemble and complement enzymatic activity in bacteria and in mammalian cells. We created two sets of complementing pairs that individually have no enzymatic activity. However, when brought into close geometric proximity, the complementing pairs associated resulting in detectable enzymatic activity. We then constructed a stable ligand complex composed of reporter fragment, linker, and targeting moiety. The targeting moiety, in this case a ligand, allowed cell surface receptor targeting in vitro. Further, we were able to simultaneously visualize two cell surface receptors implicated in cancer development, epidermal growth factor receptor and transferrin receptor, using complementing pairs of the ligand-reporter fragment complex.
Collapse
Affiliation(s)
- Ann-Marie Broome
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Dermatology, Case Western Reserve University
| | - Nihir Bhavsar
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gopal Ramamurthy
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gail Newton
- Department of Pathology at Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James P. Basilion
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| |
Collapse
|
25
|
Bhide RS, Lombardo LJ, Hunt JT, Cai ZW, Barrish JC, Galbraith S, Jeyaseelan R, Mortillo S, Wautlet BS, Krishnan B, Kukral D, Malone H, Lewin AC, Henley BJ, Fargnoli J. The Antiangiogenic Activity in Xenograft Models of Brivanib, a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Kinases. Mol Cancer Ther 2010; 9:369-78. [DOI: 10.1158/1535-7163.mct-09-0472] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Schulz J, Korn M, Woenne EC, Umathum R, Briel A, Hengerer A, Semmler W, Bock M. Measurement of R1 dynamics using sliding window-DESPOT. J Magn Reson Imaging 2010; 30:1163-70. [PMID: 19856450 DOI: 10.1002/jmri.21946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To measure longitudinal relaxation rate (R1) changes during contrast agent studies using a driven equilibrium single pulse observation of T1 (DESPOT) method with a sliding window (sw) acquisition. MATERIALS AND METHODS A sw-DESPOT technique was implemented that uses several three-dimensional (3D) image data sets to calculate R1 with a temporal resolution of only a single data set. Different sources of systematic errors were studied in simulations, and the technique was tested in a tumor-bearing mouse using an intravascular contrast agent. RESULTS Consistent concentration distributions of the CA were calculated with a temporal resolution of 10 s. CONCLUSION Sw-DESPOT offers a precise and fast method to monitor the CA dynamics in 3D volumes.
Collapse
Affiliation(s)
- Jessica Schulz
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
McSheehy PMJ, Weidensteiner C, Cannet C, Ferretti S, Laurent D, Ruetz S, Stumm M, Allegrini PR. Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 2009; 16:212-25. [PMID: 20008843 DOI: 10.1158/1078-0432.ccr-09-0686] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of a generic response biomarker by comparison of chemotherapeutics with different action mechanisms on several noninvasive biomarkers in experimental tumor models. EXPERIMENTAL DESIGN The spin-lattice relaxation time of water protons (T(1)) was quantified using an inversion recovery-TrueFISP magnetic resonance imaging method in eight different experimental tumor models before and after treatment at several different time points with five different chemotherapeutics. Effects on T(1) were compared with other minimally invasive biomarkers including vascular parameters, apparent diffusion coefficient, and interstitial fluid pressure, and were correlated with efficacy at the endpoint and histologic parameters. RESULTS In all cases, successful chemotherapy significantly lowered tumor T(1) compared with vehicle and the fractional change in T(1) (DeltaT(1)) correlated with the eventual change in tumor size (range: r(2) = 0.21, P < 0.05 to r(2) = 0.73, P < 0.0001), except for models specifically resistant to that drug. In RIF-1 tumors, interstitial fluid pressure was decreased, but apparent diffusion coefficient and permeability increased in response to the microtubule stabilizer patupilone and 5-fluorouracil. Although DeltaT(1) was small (maximum of -20%), the variability was very low (5%) compared with other magnetic resonance imaging methods (24-48%). Analyses ex vivo showed unchanged necrosis, increased apoptosis, and decreased %Ki67 and total choline, but only Ki67 and choline correlated with DeltaT(1). Correlation of Ki67 and DeltaT(1) were observed in other models using patupilone, paclitaxel, a VEGF-R inhibitor, and the mammalian target of rapamycin inhibitor everolimus. CONCLUSIONS These results suggest that a decrease in tumor T(1) reflects hypocellularity and is a generic marker of response. The speed and robustness of the method should facilitate its use in clinical trials.
Collapse
Affiliation(s)
- Paul M J McSheehy
- Oncology Research and Global Imaging Group, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Neuzillet Y, Culine S, Patard JJ. Prognostic factors for cases with metastatic renal cell carcinoma in the era of targeted medicine. Int J Urol 2009; 16:855-61. [DOI: 10.1111/j.1442-2042.2009.02365.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Hui W, Jinming Z, Jiahe T, Baolin Q, Tianran L, Yingmao C, Jian L, Shan W. Using Dual-Tracer PET to Predict the Biologic Behavior of Human Colorectal Cancer. J Nucl Med 2009; 50:1857-64. [DOI: 10.2967/jnumed.109.064238] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
|
31
|
A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer. Int J Radiat Oncol Biol Phys 2009; 75:611-7. [DOI: 10.1016/j.ijrobp.2009.04.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/13/2009] [Accepted: 04/13/2009] [Indexed: 01/18/2023]
|
32
|
Feng Y, Emerson L, Jeong EK, Parker DL, Lu ZR. Application of a biodegradable macromolecular contrast agent in dynamic contrast-enhanced MRI for assessing the efficacy of indocyanine green-enhanced photothermal cancer therapy. J Magn Reson Imaging 2009; 30:401-6. [PMID: 19629979 DOI: 10.1002/jmri.21838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the effectiveness of a polydisulfide-based biodegradable macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing the efficacy of indocyanine green-enhanced photothermal cancer therapy using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS Breast cancer xenografts in mice were injected with indocyanine green and irradiated with a laser. The efficacy was assessed using DCE-MRI with GDCC of 40 kDa (GDCC-40) at 4 hours and 7 days after the treatment. The uptake of GDCC-40 by the tumors was fit to a two-compartment model to obtain tumor vascular parameters, including fractional plasma volume (f(PV)), endothelium transfer coefficient (K(PS)), and permeability surface area product (PS). RESULTS GDCC-40 resulted in similar tumor vascular parameters at three doses, with larger standard deviations at lower doses. The values of f(PV), K(PS), and PS of the treated tumors were smaller (P < 0.05) than those of untreated tumors at 4 hours after the treatment and recovered to pretreatment values (P > 0.05) at 7 days after the treatment. CONCLUSION DCE-MRI with GDCC-40 is effective for assessing tumor early response to dye-enhanced photothermal therapy and detecting tumor relapse after the treatment. GDCC-40 has a potential to noninvasively monitor anticancer therapies with DCE-MRI.
Collapse
Affiliation(s)
- Yi Feng
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
33
|
Banzato A, Rondina M, Meléndez-Alafort L, Zangoni E, Nadali A, Renier D, Moschini G, Mazzi U, Zanovello P, Rosato A. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate. Nucl Med Biol 2009; 36:525-33. [DOI: 10.1016/j.nucmedbio.2009.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 02/06/2009] [Accepted: 02/18/2009] [Indexed: 12/12/2022]
|
34
|
Abstract
PURPOSE OF REVIEW A better understanding of the molecular events underlying stroke recovery might be useful to optimize restorative therapies. Measurement of these events, however, is generally inaccessible in humans, at least at the molecular level. Substitute measures, or biomarkers, that are accessible might provide deeper insights into spontaneous recovery in humans. This review considers advances in use of biomarkers to understand recovery from stroke, and to serve as a surrogate measure of stroke recovery, including in a clinical trial context. RECENT FINDINGS Among the key recent findings is that measures of brain function and injury are the strongest predictors of treatment effect, moreso than behavioral measures are, despite the reliance on behavioral measures as study entry criteria. Functional neuroimaging studies have provided insights into therapeutic mechanism of action. In addition, measures of central nervous system function have been used to estimate individual therapy needs, findings that suggest the potential to tailor restorative therapies to the specific needs of individual patients. SUMMARY Many therapies are emerging as potentially useful to promote improved recovery after stroke. Continued advances in biomarkers are providing new insights into the neurobiology of both spontaneous and therapy-induced brain repair after stroke.
Collapse
|
35
|
Samén E, Thorell JO, Lu L, Tegnebratt T, Holmgren L, Stone-Elander S. Synthesis and preclinical evaluation of [(11)C]PAQ as a PET imaging tracer for VEGFR-2. Eur J Nucl Med Mol Imaging 2009; 36:1283-95. [PMID: 19288096 DOI: 10.1007/s00259-009-1111-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 02/25/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE (R,S)-N-(4-Bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolinamine (PAQ) is a tyrosine kinase inhibitor with high affinity for the vascular endothelial growth factor receptor 2 (VEGFR-2), which plays an important role in tumour angiogenesis. The aim of this work was to develop and evaluate in mice the (11)C-labelled analogue as an in vivo tracer for VEGFR-2 expression in solid tumours. METHODS [(11)C]PAQ was synthesized by an N-methylation of desmethyl-PAQ using [(11)C]methyl iodide. The tracer's pharmacokinetic properties and its distribution in both subcutaneous and intraperitoneal tumour models were evaluated with positron emission tomography (PET). [(18)F]FDG was used as a reference tracer for tumour growth. PET results were corroborated by ex vivo and in vitro phosphor imaging and immunohistochemical analyses. RESULTS In vitro assays and PET in healthy animals revealed low tracer metabolism, limited excretion over 60 min and a saturable and irreversible binding. Radiotracer uptake in subcutaneous tumour masses was low, while focal areas of high uptake (up to 8% ID/g) were observed in regions connecting the tumour to the host. Uptake was similarly high but more distributed in tumours growing within the peritoneum. The pattern of radiotracer uptake was generally different from that of the metabolic tracer [(18)F]FDG and correlated well with variations in VEGFR-2 expression determined ex vivo by immunohistochemical analysis. CONCLUSION These results suggest that [(11)C]PAQ has potential as a noninvasive PET tracer for in vivo imaging of VEGFR-2 expression in angiogenic "hot spots".
Collapse
Affiliation(s)
- Erik Samén
- Karolinska Pharmacy, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In contrast with cytotoxic agents that do not differentiate between normal proliferating and tumour cells, targeted therapies primarily exert their actions in cancer cells. Initiation and maintenance of tumours are due to genetic alterations in specific loci. The identification of the genes in which these alterations occur has opened new opportunities for cancer treatment. The PI3K (phosphoinositide 3-kinase) pathway is often overactive in human cancers, and various genetic alterations have been found to cause this. In all cases, PI3K inhibition is considered to be one of the most promising targeted therapies for cancer treatment. The present mini-review provides an update on new PI3K inhibitors currently in or entering clinical development. Recent discoveries, challenges and future prospects will be discussed.
Collapse
|
37
|
Ye F, Wu X, Jeong EK, Jia Z, Yang T, Parker D, Lu ZR. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem 2009; 19:2300-3. [PMID: 19053180 PMCID: PMC2651601 DOI: 10.1021/bc800211r] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A peptide targeted contrast agent, CLT1-(Gd-DTPA), was synthesized for molecular imaging of fibronectin-fibrin complexes in tumor tissue with magnetic resonance imaging (MRI). The T(1) and T(2) relaxivities of CLT1-(Gd-DTPA) were 4.22 and 4.45 mM(-1) s(-1) at 3 T, respectively. The targeted contrast agent specifically bound to tumor tissue and resulted in significant tumor contrast enhancement at a dose of 0.1 mmol Gd/kg for at least 60 min in mice bearing HT-29 human colon carcinoma xenografts as shown in dynamic MR images. In contrast, a control nontargeted contrast agent, Gd(DTPA-BMA), was cleared rapidly with little tumor enhancement 60 min postinjection. Tumor enhancement with CLT1-(Gd-DTPA) was significantly reduced after coinjection with a 3-fold excess of free CLT1 peptide. The preliminary study has shown that CLT1-(Gd-DTPA) can specifically bind to the fibrin-fibronectin complexes in tumor tissues, resulting in significant tumor enhancement. The targeted contrast agent has a potential for cancer molecular imaging with MRI.
Collapse
Affiliation(s)
- Furong Ye
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Petrenko V. Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opin Drug Deliv 2008; 5:825-36. [PMID: 18712993 DOI: 10.1517/17425247.5.8.825] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND New phage-derived biorecognition nanomaterials have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and the evolution of phage display technology. OBJECTIVE This review focuses on the progress made in the development of these new nanomaterials and discusses the prospects of using phage as a bioselectable molecular recognition interface in medical and technical devices. METHODS The author used data obtained both in his research group and sourced using Science Citation Index (Web of Science) search resources. RESULTS/CONCLUSION The merging of phage display technologies with nanotechnology over the past few years has proved promising and has already shown its vitality and productivity by contributing vigorously to different areas of medicine and technology, such as medical diagnostics and monitoring, molecular imaging, targeted drug and gene delivery, vaccine development, as well as bone and tissue repair.
Collapse
Affiliation(s)
- Va Petrenko
- Auburn University, Department of Pathobiology, AL 36849, USA.
| |
Collapse
|
39
|
Van Beers BE, Vilgrain V. Biomarkers in abdominal imaging. ACTA ACUST UNITED AC 2008; 34:663-7. [DOI: 10.1007/s00261-008-9480-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/31/2008] [Indexed: 12/22/2022]
|
40
|
Vaidya A, Sun Y, Feng Y, Emerson L, Jeong EK, Lu ZR. Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate. Pharm Res 2008; 25:2002-11. [PMID: 18584312 DOI: 10.1007/s11095-008-9608-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/22/2008] [Indexed: 12/11/2022]
Abstract
PURPOSE To study contrast-enhanced MRI guided photodynamic therapy with a pegylated bifunctional polymer conjugate containing an MRI contrast agent and a photosensitizer for minimally invasive image-guided cancer treatment. METHODS Pegylated and non-pegylated poly-(L-glutamic acid) conjugates containing mesochlorin e6, a photosensitizer, and Gd(III)-DO3A, an MRI contrast agent, were synthesized. The effect of pegylation on the biodistribution and tumor targeting was non-invasively visualized in mice bearing MDA-MB-231 tumor xenografts with MRI. MRI-guided photodynamic therapy was carried out in the tumor bearing mice. Tumor response to photodynamic therapy was evaluated by dynamic contrast enhanced MRI and histological analysis. RESULTS The pegylated conjugate had longer blood circulation, lower liver uptake and higher tumor accumulation than the non-pegylated conjugate as shown by MRI. Site-directed laser irradiation of tumors resulted in higher therapeutic efficacy for the pegylated conjugate than the non-pegylated conjugate. Moreover, animals treated with photodynamic therapy showed reduced vascular permeability on DCE-MRI and decreased microvessel density in histological analysis. CONCLUSIONS Pegylation of the polymer bifunctional conjugates reduced non-specific liver uptake and increased tumor uptake, resulting in significant tumor contrast enhancement and high therapeutic efficacy. The pegylated poly(L-glutamic acid) bifunctional conjugate is promising for contrast enhanced MRI guided photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Anagha Vaidya
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Spontaneous behavioral recovery is usually limited after stroke, making stroke a leading source of disability. A number of therapies in development aim to improve patient outcomes not by acutely salvaging threatened tissue, but instead by promoting repair and restoration of function in the subacute or chronic phase after stroke. Examples include small molecules, growth factors, cell-based therapies, electromagnetic stimulation, device-based strategies, and task-oriented and repetitive training-based interventions. Stage of development across therapies varies widely, from preclinical to late-phase clinical trials. The optimal methods to prescribe such therapies require further studies, for example, to best identify appropriate patients or to guide features of dosing. Likely, anatomic, functional, and behavioral measures of brain state, as well as measures of injury, will each be useful in this regard. Considerations for clinical trials of restorative therapies are provided, emphasizing both similarities and points of divergence with acute stroke clinical trial design.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, University of California, Irvine, CA 92868-4280, USA.
| |
Collapse
|
42
|
Wan J, Milosevic M, Brade AM. Use of palliative radiotherapy trials for clinical biomarker development. Cancer Metastasis Rev 2008; 27:435-43. [PMID: 18392923 DOI: 10.1007/s10555-008-9132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Approximately one quarter of all cancer patients will require palliative radiation treatment at some point during the course of their disease, but only a minority of these patients are entered in clinical trials. ETHICAL ASSESSMENT OF BIOMARKERS IN PALLIATIVE RADIOTHERAPY TRIALS We review the literature debating the ethics of inclusion of "palliative" patients on clinical trials. We suggest that these patients provide a potentially valuable resource that can be leveraged to facilitate the discovery and validation of biomarkers predictive of radiation response and toxicity. In addition, this patient population offers valuable opportunities to test combination of radiation and targeted therapies to screen for activity, toxicity and biomarkers in a relatively safe manner. CONCLUSION Patients undergoing palliative radiation therapy may provide new opportunities for the development and testing of predictive radiotherapy biomarkers as well as affording opportunities to test combinations of radiation and targeted therapies.
Collapse
Affiliation(s)
- Jonathan Wan
- Radiation Medicine Program, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | | |
Collapse
|
43
|
Lucignani G. Imaging biomarkers: from research to patient care—a shift in view. Eur J Nucl Med Mol Imaging 2007; 34:1693-7. [PMID: 17823797 DOI: 10.1007/s00259-007-0569-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Giovanni Lucignani
- Institute of Radiological Sciences, University of Milan, Unit of Nuclear Medicine, Hospital San Paolo, Via Antonio di Rudinì, 8, 20142 Milan, Italy.
| |
Collapse
|
44
|
|