1
|
Calero-Rubio C, Paik B, Jia X, Kiick KL, Roberts CJ. Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation. Biophys Chem 2016; 217:8-19. [PMID: 27486699 DOI: 10.1016/j.bpc.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
This report focuses on the molecular-level processes and thermodynamics of unfolding of a series of helical peptides using a coarse-grained (CG) molecular model. The CG model was refined to capture thermodynamics and structural changes as a function of temperature for a set of published peptide sequences. Circular dichroism spectroscopy (CD) was used to experimentally monitor the temperature-dependent conformational changes and stability of published peptides and new sequences introduced here. The model predictions were quantitatively or semi-quantitatively accurate in all cases. The simulations and CD results showed that, as expected, in most cases the unfolding of helical peptides is well described by a simply 2-state model, and conformational stability increased with increased length of the helices. A notable exception in a 19-residue helix was when two Ala residues were each replaced with Phe. This stabilized a partly unfolded intermediate state via hydrophobic contacts, and also promoted aggregates at higher peptide concentrations.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Chemical & Biomolecular Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Bradford Paik
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Xinqiao Jia
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Kristi L Kiick
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States.
| | - Christopher J Roberts
- Chemical & Biomolecular Engineering Department, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
2
|
Tang NC, Chilkoti A. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. NATURE MATERIALS 2016; 15:419-24. [PMID: 26726995 PMCID: PMC4809025 DOI: 10.1038/nmat4521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/25/2015] [Indexed: 05/08/2023]
Abstract
Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Structural and hydrodynamic analysis of a novel drug delivery vector: ELP[V5G3A2-150]. Biophys J 2013; 104:2009-21. [PMID: 23663844 DOI: 10.1016/j.bpj.2013.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
The therapeutic potential of elastin-like polypeptide (ELP) conjugated to therapeutic compounds is currently being investigated as an approach to target drugs to solid tumors. ELPs are hydrophobic polymers that are soluble at low temperatures and cooperatively aggregate above a transition temperature (TT), allowing for thermal targeting of covalently attached drugs. They have been shown to cooperatively transition from a disordered structure to a repeating type II β-turn structure, forming a β-spiral above the TT. Here we present biophysical measurements of the structural, thermodynamic, and hydrodynamic properties of a specific ELP being investigated for drug delivery, ELP[V5G3A2-150]. We examine the biophysical properties below and above the TT to understand and predict the therapeutic potential of ELP-drug conjugates. We observed that below the TT, ELP[V5G3A2-150] is soluble, with an extended conformation consisting of both random coil and heterogeneous β structures. Sedimentation velocity experiments indicate that ELP[V5G3A2-150] undergoes weak self-association with increasing temperature, and above the TT the hydrophobic effect drives aggregation entropically. These experiments also reveal a previously unreported temperature-dependent critical concentration (Cc) that resembles a solubility constant. Labeling ELP[V5G3A2-150] with fluorescein lowers the TT by 3.5°C at 20 μM, whereas ELP[V5G3A2-150] dissolution in physiological media (fetal bovine serum) increases the TT by ∼2.2°C.
Collapse
|
4
|
Wang M, Timachova K, Olsen BD. Experimental measurement of coil-rod-coil block copolymer tracer diffusion through entangled coil homopolymers. Macromolecules 2013; 46:1651-1658. [PMID: 25484454 PMCID: PMC4256073 DOI: 10.1021/ma302065r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing.
Collapse
Affiliation(s)
- Muzhou Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ksenia Timachova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
5
|
Oelker AM, Morey SM, Griffith LG, Hammond PT. Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. SOFT MATTER 2012; 42:10887-10895. [PMID: 24575148 PMCID: PMC3932710 DOI: 10.1039/c2sm26487k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As a platform for investigating the individual effects of substrate stiffness, permeability, and ligand density on cellular behavior, we developed a set of hydrogels with stiffness tuned by polymer backbone rigidity, independent of cross-link density and concentration. Previous studies report that poly(propargyl-L-glutamate) (PPLG), synthesized by ring-opening polymerization of the N-carboxy anhydride of γ-propargyl-L-glutamate (γpLglu), adopts a rigid a-helix conformation: we hypothesized that a random copolymer (PPDLG) with equal amounts of γpLglu and γ-propargyl-D-glutamate (γpDglu) monomers would exhibit a more flexible random coil conformation. The resulting macromers exhibited narrow molecular weight distributions (PDI = 1.15) and were grafted with ethylene glycol groups using a highly efficient "click" azide/alkyne cycloaddition reaction with average grafting efficiency of 97% for PPLG and 85% for PPDLG. The polypeptide secondary structure, characterized via circular dichroism spectroscopy, FTIR spectroscopy, and dynamic light scattering, is indeed dependent upon monomer chirality: PPLG exhibits an α-helix conformation while PPDLG adopts a random coil conformation. Hydrogel networks produced by cross-linking either helical or random coil polypeptides with poly(ethylene glycol) (PEG) were analyzed for amount of swelling, gelation efficiency, and permeability to a model protein. In addition, the elastic modulus of helical and coil polypeptide gels was determined by AFM indentation in fluid. Importantly, we found that helical and coil polypeptide gels exhibited similar swelling and permeability but different stiffnesses, which correspond to predictions from the theory of semi-flexible chains.
Collapse
Affiliation(s)
- Abigail M. Oelker
- MIT Department of Chemical Engineering, 77 Massachusetts Avenue, Building 76–553, Cambridge, MA USA. Fax: 617-253-8557; Tel: 617-258-7577
| | - Shannon M. Morey
- MIT Department of Chemistry, 77 Massachusetts Avenue, Building 18-380, Cambridge, MA USA
| | - Linda G. Griffith
- MIT Department of Biological Engineering, 77 Massachusetts Avenue, Building 16-429, Cambridge, MA USA. Fax: 617-253-2400; Tel: 617-253-0013
| | - Paula T. Hammond
- MIT Department of Chemical Engineering, 77 Massachusetts Avenue, Building 76–553, Cambridge, MA USA. Fax: 617-253-8557; Tel: 617-258-7577
| |
Collapse
|
6
|
Frandsen JL, Ghandehari H. Recombinant protein-based polymers for advanced drug delivery. Chem Soc Rev 2012; 41:2696-706. [DOI: 10.1039/c2cs15303c] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wang X, Albrecht JC, Lin JS, Barron AE. Monodisperse, "highly" positively charged protein polymer drag-tags generated in an intein-mediated purification system used in free-solution electrophoretic separations of DNA. Biomacromolecules 2011; 13:117-23. [PMID: 22168388 DOI: 10.1021/bm2013313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Free-solution conjugate electrophoresis (FSCE) is a method of DNA sequencing that eliminates the need for viscous polymer solutions by tethering a carefully designed, mobility modifying "drag-tag" to each DNA molecule to achieve size-based separations of DNA. The most successful drag-tags to date are genetically engineered, highly repetitive polypeptides ("protein polymers") that are designed to be large, water-soluble, and completely monodisperse. Positively charged arginines were deliberately introduced at regular intervals into the amino acid sequence to increase the hydrodynamic drag without increasing drag-tag length. Additionally, a one-step purification method that combines affinity chromatography and on-column tag cleavage was devised to achieve the required drag-tag monodispersity. Sequencing with a read length of approximately 180 bases was successfully achieved with a known sequence in free-solution electrophoresis using one of these positively charged drag-tags. This preliminary result is expected to lead to further progress in FSCE sequencing with ~400 bases read length possible when more "highly" positively charged protein polymers of larger size are generated with the intein system.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Departments of Bioengineering, Stanford University, Stanford, California 94305, United States
| | | | | | | |
Collapse
|
8
|
Top A, Zhong S, Yan C, Roberts CJ, Pochan DJ, Kiick KL. Controlling assembly of helical polypeptides via PEGylation strategies. SOFT MATTER 2011; 20:9758-9766. [PMID: 24039625 PMCID: PMC3769986 DOI: 10.1039/c1sm05686g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent studies in our laboratories have demonstrated that a helical polypeptide (17H6), equipped with a histidine tag and a helical alanine-rich, glutamic-acid-containing domain, exhibits pH-responsive assembly behavior useful in the production of polymorphological nanostructures. In this study, the histidine tag in these polypeptides was replaced by polyethylene glycol (PEG) with different molecular masses (5 kDa, or 10 kDa), and the self-association behavior of 17H6 and the PEGylated conjugates was characterized via dynamic light scattering (DLS), small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM). DLS experiments illustrated that the polypeptide and its PEG-conjugates undergo reversible assembly under acidic conditions, suggesting that the aggregation state of the polypeptide and the conjugates is controlled by the charged state of the glutamic acid residues. Nanoscale aggregates were detected at polypeptide/conjugate concentrations as low as 20 μM (∼0.3-0.5 mg ml-1) at physiological and ambient temperatures. Scattering and microscopy results showed that the size, the aggregation number, and the morphology of the aggregates can be tuned by the size and the nature of the hydrophilic tag. This tunable nature of the morphology of the aggregates, along with their low critical aggregation concentration, suggests that PEG-alanine-rich polypeptide conjugates may be useful as drug delivery vehicles in which the alanine-rich block serves as a drug attachment domain.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | | | | | | | | |
Collapse
|
9
|
Top A, Roberts CJ, Kiick KL. Conformational and aggregation properties of a PEGylated alanine-rich polypeptide. Biomacromolecules 2011; 12:2184-92. [PMID: 21553871 DOI: 10.1021/bm200272w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conformational and aggregation behavior of PEG conjugates of an alanine-rich polypeptide (PEG-c17H6) were investigated and compared to that of the polypeptide equipped with a deca-histidine tag (17H6). These polypeptides serve as simple and stimuli-responsive models for the aggregation behavior of helix-rich proteins, as our previous studies have shown that the helical 17H6 self-associates at acidic pH and converts to β-sheet structures at elevated temperature under acidic conditions. In the work here, we show that PEG-c17H6 also adopts a helical structure at ambient/subambient temperatures, at both neutral and acidic pH. The thermal denaturation behavior of 17H6 and PEG-c17H6 is similar at neutral pH, where the alanine-rich domain has no self-association tendency. At acidic pH and elevated temperature, however, PEGylation slows β-sheet formation of c17H6, and reduces the apparent cooperativity of thermally induced unfolding. Transmission electron microscopy of PEG-c17H6 conjugates incubated at elevated temperatures showed fibrils with widths of ∼20-30 nm, wider than those observed for fibrils of 17H6. These results suggest that PEGylation reduces β-sheet aggregation in these polypeptides by interfering, only after unfolding of the native helical structure, with interprotein conformational changes needed to form β-sheet aggregates.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
10
|
Liu S, Kiick K. Architecture effects on L-selectin shedding induced by polypeptide-based multivalent ligands. Polym Chem 2011; 2:1513-1522. [PMID: 23926449 DOI: 10.1039/c1py00063b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent interactions between selectins and their ligands play key roles in mediating the rolling and tethering of leukocytes in the early steps of the inflammatory response, as well as in lymphocyte circulation. L-selectin shedding, which is the proteolytic cleavage of L-selectin, can be induced by L-selectin clustering through the binding of multivalent ligands to multiple L-selectin molecules, and it has been shown to regulate leukocyte rolling and subsequent integrin activation for firm adhesion. In this paper, we report the production of homogenous glycopolypeptides modified with a 3,6-disulfo-galactopyranoside equipped with a caproyl linker. The saccharide residue was chemically attached to various polypeptide backbones of differing architectures; the composition and purity of the sulfated glycopolypeptides was confirmed via1H-NMR spectroscopy, amino acid analysis (AAA), and electrophoretic analysis. The retention of the conformation of the polypeptide backbone was confirmed via circular dichroic spectroscopy. The shedding of l-selectin from the surface of Jurkat cells induced by these sulfated glycopolypeptides, determined via ELISA-based methods, varied based on differences in the architectures of the polypeptide scaffolds, suggesting opportunities for these strategies in probing cell-surface receptor arrays and directing cell signaling events.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware, 19716, USA.
| | | |
Collapse
|
11
|
Top A, Kiick KL. Multivalent protein polymers with controlled chemical and physical properties. Adv Drug Deliv Rev 2010; 62:1530-40. [PMID: 20562016 PMCID: PMC3025749 DOI: 10.1016/j.addr.2010.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
In this review, we describe our work on the design, characterization, and modification of a series of alanine-rich helical polypeptides with novel functions. Glycosylation of the polypeptides has permitted investigation of polymer architecture effects on multivalent interactions. One of the members of this polypeptide family exhibits polymorphological behavior that is easily manipulated via simple changes in solution pH and temperature. Polypeptide-based fibrils formed at acidic pH and high temperature were shown to direct the one-dimensional organization of gold nanoparticles via electrostatic interactions. As a precursor to fibrils, aggregates likely comprising alanine-rich cores form at low temperatures and acidic pH and reversibly dissociate into monomers upon deprotonation. PEGylation of these polypeptides does not alter the self-association or conformational behavior of the polypeptide, suggesting potential applications in the development of assembled delivery vehicles, as modification of the polypeptides should be a useful strategy for controlling assembly.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, Delaware 19716
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
12
|
Grieshaber SE, Nie T, Yan C, Zhong S, Teller SS, Clifton RJ, Pochan DJ, Kiick KL, Jia X. Assembly Properties of an Alanine-Rich, Lysine-Containing Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels. MACROMOL CHEM PHYS 2010; 212:229-239. [PMID: 21359141 DOI: 10.1002/macp.201000446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We are interested in developing peptide/polymer hybrid hydrogels that are chemically diverse and structurally complex. Towards this end, an alanine-based peptide doped with charged lysines with a sequence of (AKA(3)KA)(2) (AK2) was selected from the crosslinking regions of the natural elastin. Pluronic(®) F127, known to self-assemble into defined micellar structures, was employed as the synthetic building blocks. Fundamental investigations on the environmental effects on the secondary structure and assembly properties of AK2 peptide were carried out with or without the F-127 micelles. At a relatively low peptide concentration (~0.5 mg/mL), the F127 micelles are capable of not only increasing the peptide helicity but also stabilizing it against thermal denaturation. At a higher peptide concentration in basic media, the AK2 peptide developed a substantial amount of β-sheet structure that is conducive to the formation of nanofibrils. The fibril formation was confirmed collectively by atomic force microscopy (AFM), small angle neutron scattering (SANS) and transmission electron microscopy (TEM). The assembly kinetics is strongly dependent on solution temperature and pH; an increased temperature and a more basic environment led to faster fibril assembly. The self-assembled nanoscale structures were covalently interlocked via the Michael-type addition reaction between vinyl sulfone-decorated F127 micelles and the lysine amines exposed at the surface of the nanofibers. The crosslinked hybrid hydrogels were viscoelastic, exhibiting an elastic modulus of approximately 17 kPa and a loss tangent of 0.2.
Collapse
Affiliation(s)
- Sarah E Grieshaber
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Top A, Kiick KL, Roberts CJ. Modulation of self-association and subsequent fibril formation in an alanine-rich helical polypeptide. Biomacromolecules 2008; 9:1595-603. [PMID: 18452331 DOI: 10.1021/bm800056r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal unfolding, reversible self-association, and irreversible aggregation were investigated for an alanine-rich helical polypeptide, 17-H-6, with sequence [AAAQEAAAAQAAAQAEAAQAAQ] 6. Dynamic light scattering, transmission electron microscopy, and thermal unfolding measurements indicate that 17-H-6 spontaneously and reversibly self-associates at acidic pH and low temperature. The resulting multimers have a compact, globular morphology with an average hydrodynamic radius approximately 10-20 nm and reversibly dissociate to monomers upon an increase to pH 7.4. Both free monomer and 17-H-6 chains within the multimers are alpha-helical and folded at low temperature. Reversible unfolding of the monomer occurs upon heating of solutions at pH 7.4. At pH 2.3, heating first causes incomplete dissociation and unfolding of the constituent chains. Further incubation at elevated temperature induces additional structural and morphological changes and results in fibrils with a beta-sheet 2 degrees structure and a characteristic diameter of 5-10 nm (7 nm mean). The ability to modulate association and aggregation suggests opportunities for this class of polypeptides in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
14
|
Liu S, Kiick KL. Architecture Effects on the Binding of Cholera Toxin by Helical Glycopolypeptides. Macromolecules 2008; 41:764-772. [PMID: 19214239 PMCID: PMC2639716 DOI: 10.1021/ma702128a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of binding events in biological systems are mediated by multivalent interactions between oligosaccharides and saccharide receptors present on pathogens and cell surfaces. In particular, given the important role of multivalent interaction between proteins and carbohydrates in the initial step of pathogen recognition, many glycosylated molecules and polymers have been synthesized in order to mimic the carbohydrate ligands and to inhibit the binding of the pathogen to its target. In this work, we extend our evaluation of the impact of the architecture of well-defined glycopolypeptides on the inhibition of binding of the cholera toxin B pentamer (CT B(5)) subunit. Here we report the production of two families of α-helical glycopolypeptides which were synthesized via a combination of protein engineering and chemical methods. The presentation of pendant saccharides on the polypeptide backbones, as well as their valencies, can be well controlled via these methods. Control of the backbone conformation, introduced in this report, is also possible via these strategies. The polypeptides and glycopolypeptides were characterized via SDS-PAGE analysis, (1)H NMR, and MALDI-TOF mass spectrometry. Their conformation and hydrodynamic volume were characterized by circular dichroic (CD) spectroscopy and gel permeation chromatography (GPC), respectively. The binding of CT B(5) by these glycopolypeptides was evaluated via direct enzyme-linked immunosorbent assay (DELA). The effects of spacing and conformation were elucidated by comparison of the binding exhibited by helical glycopolypeptides with that of random-coil glycopolypeptides.
Collapse
|