1
|
Ali S, Aman A, Hengphasatporn K, Oopkaew L, Todee B, Fujiki R, Harada R, Shigeta Y, Krusong K, Choowongkomon K, Chavasiri W, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Evaluating solubility, stability, and inclusion complexation of oxyresveratrol with various β-cyclodextrin derivatives using advanced computational techniques and experimental validation. Comput Biol Chem 2024; 112:108111. [PMID: 38879954 DOI: 10.1016/j.compbiolchem.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Oxyresveratrol (OXY), a natural stilbenoid in mulberry fruits, is known for its diverse pharmacological properties. However, its clinical use is hindered by low water solubility and limited bioavailability. In the present study, the inclusion complexes of OXY with β-cyclodextrin (βCD) and its three analogs, dimethyl-β-cyclodextrin (DMβCD), hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were investigated using in silico and in vitro studies. Molecular docking revealed two binding orientations of OXY, namely, 4',6'-dihydroxyphenyl (A-form) and 5,7-benzenediol ring (B-form). Molecular Dynamics simulations suggested the formation of inclusion complexes with βCDs through two distinct orientations, with OXY/SBEβCD exhibiting maximum atom contacts and the lowest solvent-exposed area in the hydrophobic cavity. These results corresponded well with the highest binding affinity observed in OXY/SBEβCD when assessed using the MM/GBSA method. Beyond traditional simulation methods, Ligand-binding Parallel Cascade Selection Molecular Dynamics method was employed to investigate how the drug enters and accommodates within the hydrophobic cavity. The in silico results aligned with stability constants: SBEβCD (2060 M-1), HPβCD (1860 M-1), DMβCD (1700 M-1), and βCD (1420 M-1). All complexes exhibited a 1:1 binding mode (AL type), with SBEβCD enhancing OXY solubility (25-fold). SEM micrographs, DSC thermograms, FT-IR and 1H NMR spectra confirm the inclusion complex formation, revealing novel surface morphologies, distinctive thermal behaviors, and new peaks. Notably, the inhibitory impact on the proliferation of breast cancer cell lines, MCF-7, exhibited by inclusion complexes particularly OXY/DMβCD, OXY/HPβCD, and OXY/SBEβCD were markedly superior compared to that of OXY alone.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Lipika Oopkaew
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyaporn Todee
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Kalydi E, Malanga M, Nielsen TT, Wimmer R, Béni S. Solving the puzzle of 2-hydroxypropyl β-cyclodextrin: Detailed assignment of the substituent distribution by NMR spectroscopy. Carbohydr Polym 2024; 338:122167. [PMID: 38763706 DOI: 10.1016/j.carbpol.2024.122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/21/2024]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPBCD) is one of the most important cyclodextrin derivatives, finding extensive applications in the pharmaceutical sector. Beyond its role as an excipient, HPBCD achieved orphan drug status in 2015 for Niemann-Pick type C disease treatment, prompting research into its therapeutic potential for various disorders. However, the acceptance of HPBCD as an active pharmaceutical ingredient may be impeded by its complex nature. Indeed, HPBCD is not a single entity with a well-defined structure, instead, it is a complex mixture of isomers varying in substituent positions and the degree of hydroxypropylation, posing several challenges for unambiguous characterization. Pharmacopoeias' methods only address the average hydroxypropylation extent, lacking a rapid approach to characterize the substituent positions on the CD scaffold. Recognizing that the distribution of substituents significantly influences the complexation ability and overall activity of the derivative, primarily by altering cavity dimensions, we present a straightforward and non-destructive method based on liquid state NMR spectroscopy to analyze the positions of the hydroxypropyl sidechains. This method relies on a single set of routine experiments to establish quantitative assignment and it provides a simple yet effective tool to disclose the substitution pattern of this complex material, utilizing easily accessible (400 MHz NMR) instrumentation.
Collapse
Affiliation(s)
- Eszter Kalydi
- Department of Pharmacognosy, Semmelweis University, Üllői út. 26, 1085 Budapest, Hungary.
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary.
| | - Thorbjørn Terndrup Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Szabolcs Béni
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/a, 1117 Budapest, Hungary.
| |
Collapse
|
3
|
Zell L, Hofer TS, Schubert M, Popoff A, Höll A, Marschhofer M, Huber-Cantonati P, Temml V, Schuster D. Impact of 2-hydroxypropyl-β-cyclodextrin inclusion complex formation on dopamine receptor-ligand interaction - A case study. Biochem Pharmacol 2024; 226:116340. [PMID: 38848779 DOI: 10.1016/j.bcp.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-β-CD (2-HP-β-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-β-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.
Collapse
Affiliation(s)
- Lukas Zell
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, Center for Biochemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Department of Chemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Alexander Popoff
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Anna Höll
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Moritz Marschhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Petra Huber-Cantonati
- Department of Pharmaceutical Biology, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria.
| |
Collapse
|
4
|
Mikaelian G, Megariotis G, Theodorou DN. Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment. J Phys Chem B 2024; 128:6291-6307. [PMID: 38899795 PMCID: PMC11228990 DOI: 10.1021/acs.jpcb.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.
Collapse
Affiliation(s)
- Georgios Mikaelian
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| | - Grigorios Megariotis
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
- School
of Engineering, Department of Mineral Resources Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Doros N. Theodorou
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| |
Collapse
|
5
|
Ishak MAI, Aun TT, Sidek N, Mohamad S, Jumbri K, Abdul Manan NS. An enantioselective study of β-cyclodextrin and ionic liquid-β-cyclodextrin towards propranolol enantiomers by molecular dynamic simulations. J Comput Chem 2024; 45:1329-1351. [PMID: 38372509 DOI: 10.1002/jcc.27321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
In this study, the enantioselectivity of β-cyclodextrin and its derivatives towards propranolol enantiomers are investigated by molecular dynamic (MD) simulations. β-cyclodextrin (β-CD) have previously been shown to be able to recognize propranolol (PRP) enantiomers. To improve upon the enantioselectivity of β-cyclodextrin, we propose the use of an ionic-liquid-modified-β-cyclodextrin (β-CD-IL). β-CD-IL was found to be able to complex R and S propranolol enantiomers with differing binding energies. The molecular docking study reveals that the ionic liquid chain attached to the β-CD molecule has significant interaction with propranolol. The formation of the most stable complex occurred between (S)-β-CD-IL and (S)-propranolol with an energy of -5.80 kcal/mol. This is attributed to the formation of a hydrogen bond between the oxygen of the propranolol and the hydrogen on the primary rim of the (S)-β-CD-IL cavity. This interaction is not detected in other complexes. The root mean-squared fluctuation (RMSF) value indicates that the NH group is the most flexible molecular fragment, followed by the aromatic group. Also of note, the formation of a complex between pristine β-CD and (S)-propranolol is the least favorable.
Collapse
Affiliation(s)
- Mohamad Adil Iman Ishak
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
- Centre of Research Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Tan Tiek Aun
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nadiah Sidek
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
- Centre of Research Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Ninie Suhana Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ma L, Zhang Y, Zhang P, Zhang H. Computational Insights into Cyclodextrin Inclusion Complexes with the Organophosphorus Flame Retardant DOPO. Molecules 2024; 29:2244. [PMID: 38792106 PMCID: PMC11124075 DOI: 10.3390/molecules29102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, we report a systematic study on the inclusion complexes of natural CDs (α-, β-, and γ-CD) with a representative OPFR of DOPO using computational methods of molecular docking, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations. The binding modes and energetics of [host:guest] inclusion complexes were analyzed in details. α-CD was not able to form a complete inclusion complex with DOPO, and the center of mass distance [host:guest] distance amounted to 4-5 Å. β-CD and γ-CD allowed for a deep insertion of DOPO into their hydrophobic cavities, and DOPO was able to frequently change its orientation within the γ-CD cavity. The energy decomposition analysis based on the dispersion-corrected density functional theory (sobEDAw) indicated that electrostatic, orbital, and dispersion contributions favored [host:guest] complexation, while the exchange-repulsion term showed the opposite. This work provides an in-depth understanding of using CD inclusion complexes in OPFRs formulations.
Collapse
Affiliation(s)
| | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Radan M, Ćujić Nikolić N, Kuzmanović Nedeljković S, Mutavski Z, Krgović N, Stević T, Marković S, Jovanović A, Živković J, Šavikin K. Multifunctional Pomegranate Peel Microparticles with Health-Promoting Effects for the Sustainable Development of Novel Nutraceuticals and Pharmaceuticals. PLANTS (BASEL, SWITZERLAND) 2024; 13:281. [PMID: 38256834 PMCID: PMC10821027 DOI: 10.3390/plants13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Recovering the bioactive components from pomegranate peel (PP) in the fruit-processing industry has attracted great attention in terms of minimizing the waste burden, as well as providing a new source of a multitude of functional compounds. The present study aimed to develop a feasible microencapsulation process of PP extract by using pectin and a pectin/2-hydroxypropyl-β-cyclodextrin (HP-β-CD) blend as coating materials. Microsized powders obtained by a spray drying technique were examined in terms of technological characteristics, exhibiting high powder yield and desirable moisture content, flowability, and cohesive properties. Assuming that the interactions with the used biopolymers occur on the surface hydrophobic domain, their presence significantly improved the thermal stability of the microencapsulated powders up to 200 °C. The health-promoting effects of PP have been associated with its high content in ellagitannins, particularly punicalagin. The obtained PP powders exhibited strong antioxidant and hypoglycemic potential, while an antimicrobial assay revealed their potent activity against Gram-positive bacteria. Additionally, an in vitro release study suggested that the used biopolymers can modify the release of target bioactive compounds, thus establishing a basis for developing an oral-controlled release system. Altogether, biowaste valorization from PP by the production of effective multifunctional microsized powders represents a sustainable way to obtain novel nutraceuticals and/or pharmaceuticals.
Collapse
Affiliation(s)
- Milica Radan
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | | | - Zorana Mutavski
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Nemanja Krgović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Tatjana Stević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| |
Collapse
|
8
|
Alvira E. Theoretical study of structures and charge distributions of 2-, 3- and 6-hydroxypropyl-β-cyclodextrin with different degrees of substitution. J Biomol Struct Dyn 2023; 41:10582-10590. [PMID: 36524475 DOI: 10.1080/07391102.2022.2155700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Hydroxypropyl-β-cyclodextrin (HPβCD) is a derivative of cyclodextrin extensively used in the pharmaceutical industry, since it improves the solubility of drugs, and widens their oral bioavailability and safety profile. Theoretical studies about HPβCD configurations are important so as to simulate by molecular mechanics and dynamics, the complex formation and enantiomeric separations of these cyclodextrins with other molecules. Twelve structures and charge distributions of 2-, 3- and 6-hydroxypropyl-β-cyclodextrin (2-, 3-, 6-HPβCD) with different degrees of substitution were obtained using ab initio methods. The atomic positions of glucose units, dihedral angles of hydroxypropyl groups (HPs), radius of gyration, and H-bonds formed were analysed in the structures. The 3-HPβCD configurations showed the greatest variations in their atomic positions, their HPs groups being slightly rotated towards the interior of the rim of cyclodextrin and hence narrowing its opening. The structures of 2-HPβCD are the least influenced by the degree of substitution and include fewer H-bonds. Different values for the partial atomic charges for each glucose unit in a molecule were obtained, as well as for all HPβCD configurations. This result, consequence of the ab initio methods used, is a new contribution that can be important to simulate processes in which small energy differences decisively influence the results. The electric potential due to the charge distribution of HPβCDs was calculated inside and outside the cavity. It was found that the changes at each position were mainly due to atomic configurations, since the differences in partial atomic charges are one or two orders of magnitude smaller than in atomic positions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Alvira
- Department of Physics, University of La Laguna, La Laguna, Spain
| |
Collapse
|
9
|
Aman A, Ali S, Mahalapbutr P, Krusong K, Wolschann P, Rungrotmongkol T. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: in silico and in vitro studies. RSC Adv 2023; 13:27244-27254. [PMID: 37701271 PMCID: PMC10494890 DOI: 10.1039/d3ra03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Sorafenib (SOR) is an oral multikinase inhibitor that effectively hampers the growth and spread of cancer cells by targeting angiogenesis and proliferation. However, SOR tablets (Nexavar) have limited oral bioavailability, ranging from 38% to 49%, due to their low water solubility. To address this issue, cyclodextrins (CDs), widely used to enhance the solubility and stability of lipophilic drugs by encapsulating them within their molecular structure, were considered in this study. We focused on β-cyclodextrin (βCD) and its derivatives, including hydroxypropyl-β-cyclodextrin (HPβCD), dimethyl-β-cyclodextrin (DMβCD), sulfobutylether-β-cyclodextrin (SBEβCD), and compared them with γ-cyclodextrin (γCD) for generating inclusion complexes with SOR. The 200 ns molecular dynamics simulations revealed that SOR could form inclusion complexes with all CDs in two possible orientations: pyridine group insertion (P-form) and chlorobenzotrifluoride group insertion (C-form), primarily driven by van der Waals interactions. Among the four βCD derivatives studied, SOR exhibited the highest number of atom contacts with SBEβCD and demonstrated the lowest solvent accessibility within the hydrophobic cavity of SBEβCD. These findings correlated with the highest binding affinity of SOR/SBEβCD complex determined by SIE, MM/GBSA, and MM/PBSA methods. Experimental results further supported our computational predictions, in which SBEβCD exhibited a stability constant of 940 M-1 at 25 °C, surpassing βCD's stability constant of 210 M-1. Taken together, our results suggest that the modified CDs, particularly SBEβCD, hold promising potential as an efficient molecular encapsulating agent for SOR, offering improved solubility and stability for this lipophilic drug.
Collapse
Affiliation(s)
- Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna 1090 Vienna Austria
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
10
|
Samaddar S, Bose D, Loren BP, Skulsky JL, Ilnytska O, Struzik ZJ, Storch J, Thompson DH. Structure-function relationships of cholesterol mobilization from the endo-lysosome compartment of NPC1-deficient human cells by β-CD polyrotaxanes. PLoS One 2022; 17:e0268613. [PMID: 36584173 PMCID: PMC9803220 DOI: 10.1371/journal.pone.0268613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 01/01/2023] Open
Abstract
Niemann-Pick Type C is a rare metabolic disorder characterized by the cellular accumulation of cholesterol within endosomal and lysosomal compartments. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) containing polyrotaxanes represent an attractive approach for treating this disease due to their ability to circulate in the blood stream for longer periods of time as a prodrug form of HP-β-CD. Once inside the cell, the macromolecular structure is thought to break down into the Pluronic precursor and the active cyclodextrin agent that promotes cholesterol mobilization from the aberrant accumulations within NPC-deficient cells. We now report that both cholesterol and decaarginine (R10) endcapped polyrotaxanes are able to remove cholesterol from NPC1 patient fibroblasts. R10 endcapped materials enter these cells and are localized within endosomes after 16 h. The cholesterol mobilization from endo-lysosomal compartments of NPC1 cells by the polyrotaxanes was directly related to their extent of endcapping and their threading efficiency. Incorporation of 4-sulfobutylether-β-cyclodextrin (SBE-β-CD) significantly improved cholesterol mobilization due to the improved solubility of the compounds. Additionally, in our efforts to scale-up the synthesis for preclinical studies, we prepared a library of polyrotaxanes using a solid phase synthesis method. These compounds also led to significant cholesterol mobilization from the cells, however, cytotoxicity studies showed that they were substantially more toxic than those prepared by the solvent-assisted method, thus limiting the therapeutic utility of agents prepared by this expedited method. Our findings demonstrate that complete endcapping of the polyrotaxanes and improved solubility are important design features for delivering high copy numbers of therapeutic β-CD to promote enhanced sterol clearance in human NPC1-deficient cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Debosreeta Bose
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bradley P. Loren
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph L. Skulsky
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Olga Ilnytska
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Zachary J. Struzik
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (DHT); (JS)
| | - David H. Thompson
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (DHT); (JS)
| |
Collapse
|
11
|
Li Z, Li K, Teng M, Li M, Sui X, Liu B, Tian B, Fu Q. Functionality-related characteristics of hydroxypropyl-β-cyclodextrin for the complexation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Volpe-Zanutto F, Vora LK, Tekko IA, McKenna PE, Permana AD, Sabri AH, Anjani QK, McCarthy HO, Paredes AJ, Donnelly RF. Hydrogel-forming microarray patches with cyclodextrin drug reservoirs for long-acting delivery of poorly soluble cabotegravir sodium for HIV Pre-Exposure Prophylaxis. J Control Release 2022; 348:771-785. [PMID: 35738464 DOI: 10.1016/j.jconrel.2022.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Hydrogel-forming microarray patches (HF-MAPs) offer minimally invasive, pain-free and prolonged drug delivery. These devices are designed to be self-administered and self-disabling, avoiding contaminated sharps waste generation. Cabotegravir sodium (CAB-Na) is a poorly soluble anti- human immunodeficiency virus (HIV) drug for the treatment and pre-exposure prophylaxis of HIV infection that lends itself to depot formation following intradermal delivery but presents significant challenges when delivered via HF-MAPs, whose nature is aqueous. Herein, we have investigated, for the first time, the use of hydroxypropyl-β-cyclodextrin (HP-β-CD) to enhance the solubility of CAB-Na, and its effect on intradermal delivery via HF-MAPs. Accordingly, tablet reservoirs containing CAB-Na and HP-β-CD were formulated. These novel reservoirs were combined with two different HF-MAP formulations (MAP1 (Gantrez S97® + poly (ethylene glycol) 10,000 + Na2CO3) and MAP2 (poly (vinyl pyrrolidone) 58 kDa + poly (vinyl alcohol) 85-120 kDa + citric acid)) to form fully integrated MAP devices which were tested in both ex vivo and in vivo settings. Ex vivo skin deposition results for MAP1 and MAP2 showed that 141 ± 40 μg and 342 ± 34 μg of CAB-Na was deposited into 0.5 cm2 of excised neonatal porcine skin after 24 h, respectively. Based on these findings, the in vivo pharmacokinetics of MAP2 were investigated over 28 days using a Sprague-Dawley rat model. After 24 h patch application, MAP2 demonstrated an extended drug release profile and an observed Cmax of 53.4 ± 10.16 μg/mL, superior to that of an FDA-approved CAB-nanosuspension administered via intramuscular application (Cmax of 43.6 ± 5.3 μg/mL). Consequently, this tablet integrated MAP device is considered to be a viable option for the intradermal delivery of hydrophobic anti-HIV drugs.
Collapse
Affiliation(s)
- Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmaceutical Sciences, R. Cândido Portinari, 200 - Cidade Universitária, Campinas - SP, 13083-871, University of Campinas, Brazil
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmacy, Aleppo University, Syria
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5126-5136. [PMID: 35412315 DOI: 10.1021/acs.jafc.1c08186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The comprehensive utilization of food-derived nutraceuticals with different polarities has been extremely restricted by their poor bioavailability and coexistence in a single system. This study aimed to fabricate a self-assembly of amphiphilic nanoparticles (NPs) for the hydrophilic EWDP and hydrophobic curcumin based on the carboxymethyl chitosan (CMCS) shell and γ-cyclodextrin (γ-CD) core. Notably, EWDP could cooperate with CMCS to yield superior colloidal properties with an excellent curcumin aqueous solubility and co-encapsulation capacity (>10%) for the NPs (pH 2.0-7.0). This phenomenon was mainly ascribed to the additional hydrogen-bonding network and hydrophobic interaction introduced by EWDP. Besides, the overall antioxidant activity, bioaccessibility, gastrointestinal stability, and Caco-2 cell absorption properties were significantly improved in the presence of EWDP (>20% increase). Therefore, EWDP could function as both a potential affinity agent and a nutrition enhancer to expand the co-delivery applications for diverse nutraceuticals with promising oral bioavailability enhancement in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
14
|
Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mahalapbutr P, Charoenwongpaiboon T, Phongern C, Kongtaworn N, Hannongbua S, Rungrotmongkol T. Molecular encapsulation of a key odor-active 2-acetyl-1-pyrroline in aromatic rice with β-cyclodextrin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Gieroba B, Kalisz G, Sroka-Bartnicka A, Płazińska A, Płaziński W, Starek M, Dąbrowska M. Molecular Structure of Cefuroxime Axetil Complexes with α-, β-, γ-, and 2-Hydroxypropyl-β-Cyclodextrins: Molecular Simulations and Raman Spectroscopic and Imaging Studies. Int J Mol Sci 2021; 22:ijms22105238. [PMID: 34063471 PMCID: PMC8156438 DOI: 10.3390/ijms22105238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, β-, γ-, and 2-hydroxypropyl-β-CD (2-HP- β-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest–host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and β-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-β-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host–guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Correspondence: (B.G.); (W.P.)
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
- Correspondence: (B.G.); (W.P.)
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| |
Collapse
|
17
|
Kashapov R, Lykova A, Kashapova N, Ziganshina A, Sergeeva T, Sapunova A, Voloshina A, Zakharova L. Nanoencapsulation of food bioactives in supramolecular assemblies based on cyclodextrins and surfactant. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Sandilya A, Natarajan U, Priya MH. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS OMEGA 2020; 5:25655-25667. [PMID: 33073091 PMCID: PMC7557249 DOI: 10.1021/acsomega.0c02760] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
We find, through atomistic molecular dynamics simulation of native cyclodextrins (CDs) in water, that although the outer surface of a CD appears like a truncated cone, the inner cavity resembles a conical hourglass because of the inward protrusion of the glycosidic oxygens. Furthermore, the conformations of the constituent α-glucose molecules are found to differ significantly from a free monomeric α-glucose molecule. This is the first computational study that maps the conformational change to the preferential hydrogen bond donating capacity of one of the secondary hydroxyl groups of CD, in consensus with an NMR experiment. We have developed a simple and novel geometry-based technique to identify water molecules occupying the nonspherical CD cavity, and the computed water occupancies are in close agreement with the experimental and density functional theory studies. Our analysis reveals that a water molecule in CD cavity loses out about two hydrogen bonds and remains energetically frustrated but possesses higher orientational degree of freedom compared to bulk water. In the context of CD-drug complexation, these imply a nonclassical, that is, enthalpically driven hydrophobic association of a drug in CD cavity.
Collapse
Affiliation(s)
- Avilasha
A. Sandilya
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Upendra Natarajan
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai 600036, India
| | - M. Hamsa Priya
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- . Phone: +91-44-22574132
| |
Collapse
|
19
|
Cyclodextrin-based nanoparticles encapsulating α-mangostin and their drug release behavior: potential carriers of α-mangostin for cancer therapy. Polym J 2019. [DOI: 10.1038/s41428-019-0296-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Adeoye O, Conceição J, Serra PA, Bento da Silva A, Duarte N, Guedes RC, Corvo MC, Aguiar-Ricardo A, Jicsinszky L, Casimiro T, Cabral-Marques H. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydr Polym 2019; 227:115287. [PMID: 31590843 DOI: 10.1016/j.carbpol.2019.115287] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
Lopinavir (LPV) is currently used in combination with ritonavir for the clinical management of HIV infections due to its limited oral bioavailability. Herein, we report the application of an in silico method to study cyclodextrin (CyD) host-guest molecular interaction with LPV for the rational selection of the best CyD for developing a CyD based LPV delivery system. The predicted CyD, a (2-hydroxy)propyl-gamma derivative with high degree of substitution (HP17-γ-CyD) was synthesized and comparatively evaluated with γ-CyD and the commercially available HP-γ-CyD. All complexes were prepared by supercritical assisted spray drying (SASD) and co-evaporation (CoEva) at molar ratios (1:1 and 1:2); and afterwards fully characterized. Results indicate a higher LPV amorphization and solubilization ability of HP17-γ-CyD. The SASD processing technology also enhanced LPV solubilization and release from complexes. The application of in silico methodologies is a feasible approach for the rational and/or deductive development of CyD drug delivery systems.
Collapse
Affiliation(s)
- Oluwatomide Adeoye
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Jaime Conceição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; UCIBIO/REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Oporto, Portugal
| | - Patrícia A Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento da Silva
- Faculdade de Farmácia da Universidade de Lisboa (FFULisboa), Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta C Corvo
- i3N|CENIMAT, Department of Materials Science, Faculty of Science and Technology, UNL, 2829-516, Caparica, Portugal
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Helena Cabral-Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
21
|
Encapsulation of alpha-mangostin and hydrophilic beta-cyclodextrins revealed by all-atom molecular dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
de Oliveira DM, Ben-Amotz D. Cavity Hydration and Competitive Binding in Methylated β-Cyclodextrin. J Phys Chem Lett 2019; 10:2802-2805. [PMID: 31067060 DOI: 10.1021/acs.jpclett.9b00939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Raman multivariate curve resolution (Raman-MCR) spectroscopy is used to measure the vibrational spectrum of water molecules in the cavity of an aqueous methylated β-cyclodextrin (Me-β-CD), as well as to quantify the competitive expulsion of those waters by benzene. The Me-β-CD cavity is found to contain 5-6 water molecules whose structure is remarkably similar to that of bulk water, although slightly more tetrahedral and with fewer weak hydrogen bonds. The binding constant of benzene to Me-β-CD, obtained using Raman-MCR, is found to be similar to that of benzene to β-CD (previously determined by other means). The competitive displacement of water by benzene in Me-β-CD is quantified by explicitly including the release of cavity-bound water molecules in the measured equilibrium constant.
Collapse
Affiliation(s)
| | - Dor Ben-Amotz
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
23
|
Kerdpol K, Kicuntod J, Wolschann P, Mori S, Rungnim C, Kunaseth M, Okumura H, Kungwan N, Rungrotmongkol T. Cavity Closure of 2-Hydroxypropyl-β-Cyclodextrin: Replica Exchange Molecular Dynamics Simulations. Polymers (Basel) 2019; 11:polym11010145. [PMID: 30960130 PMCID: PMC6401915 DOI: 10.3390/polym11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPβCD) has unique properties to enhance the stability and the solubility of low water-soluble compounds by inclusion complexation. An understanding of the structural properties of HPβCD and its derivatives, based on the number of 2-hydroxypropyl (HP) substituents at the α-d-glucopyranose subunits is rather important. In this work, replica exchange molecular dynamics simulations were performed to investigate the conformational changes of single- and double-sided HP-substitution, called 6-HPβCDs and 2,6-HPβCDs, respectively. The results show that the glucose subunits in both 6-HPβCDs and 2,6-HPβCDs have a lower chance of flipping than in βCD. Also, HP groups occasionally block the hydrophobic cavity of HPβCDs, thus hindering drug inclusion. We found that HPβCDs with a high number of HP-substitutions are more likely to be blocked, while HPβCDs with double-sided HP-substitutions have an even higher probability of being blocked. Overall, 6-HPβCDs with three and four HP-substitutions are highlighted as the most suitable structures for guest encapsulation, based on our conformational analyses, such as structural distortion, the radius of gyration, circularity, and cavity self-closure of the HPβCDs.
Collapse
Affiliation(s)
- Khanittha Kerdpol
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jintawee Kicuntod
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Peter Wolschann
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria.
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria.
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Chompoonut Rungnim
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Manaschai Kunaseth
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018; 23:E1161. [PMID: 29751694 PMCID: PMC6099580 DOI: 10.3390/molecules23051161] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs), a group of oligosaccharides formed by glucose units bound together in a ring, show a promising ability to form complexes with drug molecules and improve their physicochemical properties without molecular modifications. The stoichiometry of drug/CD complexes is most frequently 1:1. However, natural CDs have a tendency to self-assemble and form aggregates in aqueous media. CD aggregation can limit their solubility. Through derivative formation, it is possible to enhance their solubility and complexation capacity, but this depends on the type of substituent and degree of substitution. Formation of water-soluble drug/CD complexes can increase drug permeation through biological membranes. To maximize drug permeation the amount of added CD into pharmaceutical preparation has to be optimized. However, solubility of CDs, especially that of natural CDs, is affected by the complex formation. The presence of pharmaceutical excipients, such as water-soluble polymers, preservatives, and surfactants, can influence the solubilizing abilities of CDs, but this depends on the excipients' physicochemical properties. The competitive CD complexation of drugs and excipients has to be considered during formulation studies.
Collapse
Affiliation(s)
- Phennapha Saokham
- Faculty of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| | - Chutimon Muankaew
- Faculty of Pharmacy, Siam University, 38 Petchkasem Road, Phasi Charoen District, Bangkok 10160, Thailand.
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland.
| |
Collapse
|
25
|
Khuntawee W, Karttunen M, Wong-Ekkabut J. A molecular dynamics study of conformations of beta-cyclodextrin and its eight derivatives in four different solvents. Phys Chem Chem Phys 2018; 19:24219-24229. [PMID: 28848954 DOI: 10.1039/c7cp04009a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the atomic level interactions and the resulting structural characteristics is required for developing beta-cyclodextrin (βCD) derivatives for pharmaceutical and other applications. The effect of four different solvents on the structures of the native βCD and its hydrophilic (methylated βCD; MEβCD and hydroxypropyl βCD; HPβCD) and hydrophobic derivatives (ethylated βCD; ETβCD) was explored using molecular dynamics (MD) simulations and solvation free energy calculations. The native βCD, 2-MEβCD, 6-MEβCD, 2,6-DMβCD, 2,3,6-TMβCD, 6-HPβCD, 2,6-HPβCD and 2,6-ETβCD in non-polar solvents (cyclohexane; CHX and octane; OCT) were stably formed in a symmetric cyclic cavity shape through their intramolecular hydrogen bonds. In contrast, βCDs in polar solvents (methanol; MeOH and water; WAT) exhibited large structural changes and fluctuations leading to significant deformations of their cavities. Hydrogen bonding with polar solvents was found to be one of the major contributors to this behavior: solvent-βCD hydrogen bonding strongly competes with intramolecular bonding leading to significant changes in the structural stability of βCDs. An exception to this is the hydrophobic 2,6-ETβCD which retained its spherical cavity in all solvents. Based on this, it is proposed that the 2,6-ETβCD can act as a sustained release drug carrier.
Collapse
Affiliation(s)
- Wasinee Khuntawee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | | | | |
Collapse
|
26
|
Nutho B, Nunthaboot N, Wolschann P, Kungwan N, Rungrotmongkol T. Metadynamics supports molecular dynamics simulation-based binding affinities of eucalyptol and beta-cyclodextrin inclusion complexes. RSC Adv 2017. [DOI: 10.1039/c7ra09387j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of various molecular dynamics methods enables the detailed investigation of association processes, like host–guest complexes, including their dynamics and, additionally, the release of the guest compound.
Collapse
Affiliation(s)
- Bodee Nutho
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry
- Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Mahasarakham University
- Mahasarakham 44150
| | - Peter Wolschann
- Structural and Computational Biology Research Group
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Nawee Kungwan
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| |
Collapse
|
27
|
Malanga M, Szemán J, Fenyvesi É, Puskás I, Csabai K, Gyémánt G, Fenyvesi F, Szente L. "Back to the Future": A New Look at Hydroxypropyl Beta-Cyclodextrins. J Pharm Sci 2016; 105:2921-2931. [PMID: 27317368 DOI: 10.1016/j.xphs.2016.04.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022]
Abstract
Since the discovery about 30 years ago (2-hydroxypropyl) beta-cyclodextrin, a highly soluble derivative of beta-cyclodextrin, has become an approved excipient of drug formulations included both in the United States and European Pharmacopoeias. It is recommended to use as solubilizer and stabilizer for oral and parenteral formulations. Recently, its pharmacological activity has been recognized in various diseases. The increasing applications require a closer look to the structure-activity relationship. As (2-hydroxypropyl) beta-cyclodextrin (HPBCD) is always a mixture of isomers with various degrees and pattern of hydroxypropylation, no wonder that the products of different manufacturers are often different. Several HPBCDs were compared applying a battery of analytical tools including thin layer chromatography, high performance liquid chromatography (HPLC), HPLC-mass spectrometry (MS), and matrix-assisted laser desorption MS. We studied how the average degree of substitution affects the aggregation behavior, the toxicity, and the solubilizing effect on poorly soluble drugs. We found that the products with low average degree of substitution are more prone to aggregation. The samples studied are nontoxic to Caco-2 cells and have low hemolytic activity. The solubility enhancement of poorly soluble drugs decreases or increases with increasing degree of substitution or shows a maximum curve depending on the properties of the guest.
Collapse
Affiliation(s)
- Milo Malanga
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097
| | - Julianna Szemán
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097
| | - Éva Fenyvesi
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097.
| | - István Puskás
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097
| | - Katalin Csabai
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097
| | - Gyöngyi Gyémánt
- Inorganic and Analytical Chemistry, Faculty of Sciences and Technology, University of Debrecen, Hungary, H-4032
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Ltd, Budapest, Hungary H-1097
| |
Collapse
|
28
|
Kicuntod J, Khuntawee W, Wolschann P, Pongsawasdi P, Chavasiri W, Kungwan N, Rungrotmongkol T. Inclusion complexation of pinostrobin with various cyclodextrin derivatives. J Mol Graph Model 2015; 63:91-8. [PMID: 26709752 DOI: 10.1016/j.jmgm.2015.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/07/2023]
Abstract
Pinostrobin (PNS) is one of the important flavonoids and can be abundantly found in the rhizomes of fingerroot (Boesenbergia rotrunda) and galangal (Alpinia galangal and Alpinia officinarum), the herbal basis of Southeast Asian cooking. Similar to other flavonoids, PNS exhibits anti-oxidative, anti-inflammatory and anti-cancer properties. However, this compound has an extremely low water solubility that limits its use in pharmaceutical applications. Beta-cyclodextrin (βCD) and its derivatives, 2,6-dimethyl-βCD (2,6-DMβCD) and the three hydroxypropyl-βCDs (2-HPβCD, 6-HPβCD and 2,6-DHPβCD), have unique properties that enhance the stability and solubility of such low-soluble guest molecules. In the present study, molecular dynamics simulations were applied to investigate the dynamics and stability of PNS inclusion complexes with βCD and its derivatives (2,6-DMβCD, 2,6-DHPβCD, 2-HPβCD and 6-HPβCD). PNS was able to form complexes with βCD and all four of its derivatives by either the chromone (C-PNS) or phenyl (P-PNS) ring dipping toward the cavity. According to the molecular mechanics-generalized Born surface area binding free energy values, the stability of the different PNS/βCD complexes was ranked as 2,6-DHPβCD>2,6-DMβCD>2-HPβCD>6-HPβCD>βCD. These theoretical results were in good agreement with the stability constants that had been determined by the solubility method.
Collapse
Affiliation(s)
- Jintawee Kicuntod
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wasinee Khuntawee
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria; Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Khuntawee W, Wolschann P, Rungrotmongkol T, Wong-ekkabut J, Hannongbua S. Molecular Dynamics Simulations of the Interaction of Beta Cyclodextrin with a Lipid Bilayer. J Chem Inf Model 2015; 55:1894-902. [DOI: 10.1021/acs.jcim.5b00152] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Peter Wolschann
- Department
of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 14 Althan Straße 14, Vienna 1090, Austria
- Institute
of Theoretical Chemistry, University of Vienna, Währinger
Straße 17, Vienna 1090, Austria
| | | | - Jirasak Wong-ekkabut
- Department
of Physics, Faculty of Science, Kasetsart University, 50 Phahon
Yothin Road, Chatuchak, Bangkok 10900, Thailand
| | | |
Collapse
|
30
|
de la Rosa VR, Nau WM, Hoogenboom R. Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host-guest interactions. Org Biomol Chem 2015; 13:3048-57. [PMID: 25621735 DOI: 10.1039/c4ob02654c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] random copolymer was synthesized and its thermoresponsive behavior in aqueous solution modulated by the addition of different supramolecular host molecules. The macrocycles formed inclusion complexes with the nonyl aliphatic side-chains present in the copolymer, increasing its cloud point temperature. The extent of this temperature shift was found to depend on the cavitand concentration and on the strength of the host-guest complexation. The cloud point temperature could be tuned in an unprecedented wide range of 30 K by supramolecular interactions. Since the temperature-induced breakage of the inclusion complexes constitutes the driving force for the copolymer phase transition, the shift in cloud point temperature could be utilized to estimate the association constant of the nonyl side chains with the cavitands.
Collapse
Affiliation(s)
- Victor R de la Rosa
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
31
|
Reyes-Reyes ML, Roa-Morales G, Melgar-Fernández R, Reyes-Pérez H, Gómez-Oliván LM, Gonzalez-Rivas N, Bautista-Renedo J, Balderas-Hernández P. Chiral recognition of abacavir enantiomers by (2-hydroxy)propyl-β-cyclodextrin: UHPLC, NMR and DFT studies. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0499-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
de la Rosa VR, Hoogenboom R. Solution Polymeric Optical Temperature Sensors with Long-Term Memory Function Powered by Supramolecular Chemistry. Chemistry 2014; 21:1302-11. [DOI: 10.1002/chem.201405161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 12/12/2022]
|
33
|
Chen H, Ji H. Effect of substitution degree of 2-hydroxypropyl-β-cyclodextrin on the alkaline hydrolysis of cinnamaldehyde to benzaldehyde. Supramol Chem 2014. [DOI: 10.1080/10610278.2013.873126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongyan Chen
- Department of Chemical Engineering, Huizhou University, Huizhou 516007, China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
34
|
|
35
|
Folch-Cano C, Guerrero J, Speisky H, Jullian C, Olea-Azar C. NMR and molecular fluorescence spectroscopic study of the structure and thermodynamic parameters of EGCG/β-cyclodextrin inclusion complexes with potential antioxidant activity. J INCL PHENOM MACRO 2013. [DOI: 10.1007/s10847-013-0297-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Zhang H, Tan T, Feng W, van der Spoel D. Molecular Recognition in Different Environments: β-Cyclodextrin Dimer Formation in Organic Solvents. J Phys Chem B 2012; 116:12684-93. [DOI: 10.1021/jp308416p] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Haiyang Zhang
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
- Department of Cell and Molecular
Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Tianwei Tan
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Wei Feng
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - David van der Spoel
- Department of Cell and Molecular
Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
37
|
Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications: molecular modelling of the inclusion complexes. PLoS One 2012; 7:e44137. [PMID: 23028493 PMCID: PMC3446921 DOI: 10.1371/journal.pone.0044137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and randomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1:1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the randomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.
Collapse
|
38
|
Cui Y. Using Molecular Simulations to Probe Pharmaceutical Materials. J Pharm Sci 2011; 100:2000-19. [DOI: 10.1002/jps.22392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/06/2022]
|
39
|
Schönbeck C, Westh P, Madsen JC, Larsen KL, Städe LW, Holm R. Methylated β-cyclodextrins: influence of degree and pattern of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5832-5841. [PMID: 21510679 DOI: 10.1021/la200381f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The complexation of 6 bile salts with various methylated β-cyclodextrins was studied to elucidate how the degree and pattern of substitution affects the binding. The structures of the CDs were determined by mass spectrometry and NMR techniques, and the structures of the inclusion complexes were characterized from the complexation-induced shifts of (13)C nuclei as well as by 2D ROESY NMR. Thermodynamic data were generated using isothermal titration calorimetry. The structure-properties analysis showed that methylation at O3 hinders complexation by partially blocking the cavity entrance, while methyl groups at O2 promote complexation by extending the hydrophobic cavity. Like in the case of 2-hydroxypropylated cyclodextrins, the methyl substituents cause an increased release of ordered water from the hydration shell of the bile salts, resulting in a strong increase in both the enthalpy and the entropy of complexation with increased number of methyl substituents. Due to enthalpy-entropy compensation the effect on the stability constant is relatively limited. However, when all hydroxyl groups are methylated, the rigid structure of the free cyclodextrin is lost and the complexes are severely destabilized due to very unfavorable entropies.
Collapse
Affiliation(s)
- Christian Schönbeck
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Wang T, Chipot C, Shao X, Cai W. Structural characterization of micelles formed of cholesteryl-functionalized cyclodextrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:91-97. [PMID: 21141954 DOI: 10.1021/la103288j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Amphiphilic cholesteryl 2,6-di-O-methyl-β-cyclodextrins (chol-DIMEB) can self-aggregate into spherical micelles of noteworthy potential for drug delivery. All-atom molecular dynamics simulations of chol-DIMEB micelles consisting of 3-24 monomers have been performed in aqueous solution. chol-DIMEB exhibits a pronounced tendency to self-assemble into core-shell structures. van der Waals interactions within the cholesteryl nucleus constitute the main driving force responsible for the formation of the micelle. The calculated radii of the hydrophobic core and of the hydrophilic shell for the micellar structure formed by 24 monomers agree well with the experiment. The cyclodextrin moieties are found to be exposed toward the aqueous medium and possess the appropriate flexibility to capture drugs in an effective fashion. Analysis of the solvent accessible surface area and hydration number indicates that the micelles are highly hydrosoluble species and can, therefore, enhance significantly the aqueous solubility of lipophilic drugs. In addition, the spatial structure of the micelles is suggestive of multiple potential drug binding sites. The present contribution unveils how micelles endowed with specific characteristics can form, while opening exciting perspectives for the design of novel micellar nanoparticles envisioned to be drug carriers of high potential.
Collapse
Affiliation(s)
- Teng Wang
- College of Chemistry, Nankai University, Tianjin 300071, PR China
| | | | | | | |
Collapse
|
41
|
Cézard C, Trivelli X, Aubry F, Djedaïni-Pilard F, Dupradeau FY. Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Phys Chem Chem Phys 2011; 13:15103-21. [DOI: 10.1039/c1cp20854c] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Gromov SP, Nazarov VB, Avakyan VG, Fomina MV, Vedernikov AI, Kuz’mina LG, Vershinnikova TG, Lobova NA, Rudyak VY, Alfimov MV, Howard JA. Photoinduced protonation and mechanical motion in the cyclodextrin cavity: Synthesis, structure and spectral properties of 4-(2-napthyl)pyridine and their pseudorotaxane complexes. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2010.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Schönbeck C, Westh P, Madsen JC, Larsen KL, Städe LW, Holm R. Hydroxypropyl-substituted β-cyclodextrins: influence of degree of substitution on the thermodynamics of complexation with tauroconjugated and glycoconjugated bile salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17949-17957. [PMID: 21047111 DOI: 10.1021/la103124n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effect of the degree of substitution (DS) on the ability of hydroxypropylated β-cyclodextrin (HPβCD) to form inclusion complexes with six different bile salts, found within the intestinal tracts of rats, dogs, and humans, was studied by isothermal titration calorimetry. The composition and molecular structure of the cyclodextrin samples were characterized by MALDI-TOF mass spectrometry together with 1D and 2D-NMR, and some of the complexes were studied by 2D ROESY NMR. The stability and structure of the complexes were mainly determined by the position of hydroxyl groups on the bile salts and depended relatively little on the number of hydroxypropyl side chains on the CDs. The enthalpy and entropy of complexation exhibited a strong linear increase as the DS increased from 0 to 1, and a pronounced enthalpy-entropy compensation was observed. These observations are interpreted as an increased release of ordered water from the hydration shells of the bile salts, caused by the hydroxypropyl substituents on the rim of the CD. It is estimated that each CD hydroxypropyl substituent dehydrates a hydrophobic surface area of approximately 10 Å(2).
Collapse
Affiliation(s)
- Christian Schönbeck
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Green synthesis of natural benzaldehyde from cinnamon oil catalyzed by hydroxypropyl-β-cyclodextrin. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.10.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Eronina TB, Chebotareva NA, Kleymenov SY, Roman SG, Makeeva VF, Kurganov BI. Effect of 2-hydroxypropyl-β-cyclodextrin on thermal stability and aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biopolymers 2010; 93:986-93. [PMID: 20540152 DOI: 10.1002/bip.21508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of the kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscles by dynamic light scattering at 48°C showed that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) accelerated the aggregation process and induced the formation of the larger protein aggregates. The reason of the accelerating effect of HP-β-CD is destabilization of the protein molecule under action of HP-β-CD. This conclusion was supported by the data on differential scanning calorimetry and the kinetic data on thermal inactivation of Phb. It is assumed that destabilization of the Phb molecule is due to preferential binding of HP-β-CD to intermediates of protein unfolding in comparison with the original native state. The conclusion regarding the ability of the native Phb for binding of HP-β-CD was substantiated by the data on the enzyme inhibition by HP-β-CD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 986-993, 2010.
Collapse
Affiliation(s)
- Tatyana B Eronina
- Department of Structural Biochemistry of Proteins, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | | | | | | | | | | |
Collapse
|
46
|
Wang Q, He R, Cheng X, Lu C. The inclusion complexes between [Zn(dmit)2]2− anion and cyclodextrins: studied by induced circular dichroism spectra and density functional theory calculations. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9834-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Cheng X, Wang Q, Lu C, Meng Q. Watching the Conformational Changes of Maleonitriledithiolate Chromophores Inside the Inclusion Complexes with Cyclodextrins: Probed by ICD Spectra and DFT Calculations. J Phys Chem A 2010; 114:7230-40. [DOI: 10.1021/jp103118z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xian Cheng
- Nanjing National Laboratory of Microstructures, Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Qi Wang
- Nanjing National Laboratory of Microstructures, Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Changsheng Lu
- Nanjing National Laboratory of Microstructures, Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Qingjin Meng
- Nanjing National Laboratory of Microstructures, Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
48
|
Nazarov VB, Avakyan VG, Gromov SP, Vedernikov AI, Fomina MV, Vershinnikova TG, Gak VY, Lobova NA, Rudyak VY, Alfimov MV. Spectroscopic properties, structure, and photoinduced motion of 4-(2-naphthyl)pyridine in cyclodextrin cavities. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0188-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Antiprion action of new cyclodextrin analogues. Biochim Biophys Acta Gen Subj 2009; 1790:1382-6. [PMID: 19631725 DOI: 10.1016/j.bbagen.2009.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/08/2009] [Accepted: 07/10/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prion disorders are characterised by the accumulation of a misfolded isoform (PrPSc) of the host encoded prion protein (PrPC). This paper examines the antiprion potential of cyclodextrin (CD) analogues and it identifies sulphated-beta-cyclodextrin, with a half-maximal inhibitory concentration (IC50) of 2.4 microM, as having 31-fold greater antiprion activity than that previously reported for beta-cyclodextrin (betaCD). METHODS Scrapie infected cells were treated with a range of betaCD analogues. This enabled a CD structure to antiprion activity analysis to be carried out. The metachromatic activity of each of the cyclodextrins was determined, this test is employed to mimic complexation of glycosaminogylcans to a cell membrane. RESULTS Sulphated-betaCD had an IC50 of 2.4 microM and it was the only CD found to have metachromatic activity. Its activity was equivalent to that of heparin and heparin sulphate, this may account for sulphated-betaCD's superior antiprion action. GENERAL SIGNIFICANCE In solution heparin can form a helical structure with a hydrophobic interior, the hydrophobic interior of cyclic CDs is vital for CD molecule encapsulation. The controlled CD structure, however, restricts degradation by human enzymes; consequently sulphated-CDs could be ideal candidates in the search for prion therapeutics. Sulphated-CDs may open up avenues for the treatment of TSEs.
Collapse
|