1
|
Carvalho IC, Mansur AAP, Carvalho SM, Mansur HS. Nanotheranostics through Mitochondria-targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells. Nanotheranostics 2021; 5:213-239. [PMID: 33614399 PMCID: PMC7893535 DOI: 10.7150/ntno.54491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/26/2021] [Indexed: 01/23/2023] Open
Abstract
Overview: Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis. Methods: We designed and produced novel hybrid nanostructures comprising a fluorescent semiconductor core (AgInS2, AIS) and cysteine-modified carboxymethylcellulose (termed thiomer, CMC_Cys) conjugated with mitochondria-targeting peptides (KLA) forming a macromolecular shell for combining bioimaging and for inducing brain cancer cell (U-87 MG) death. Results: The optical and physicochemical properties of the nanoconjugates demonstrated suitability as photoluminescent nanostructures for cell bioimaging and intracellular tracking. Additionally, the results proved a remarkable killing activity towards glioblastoma cells of cysteine-bearing CMC conjugates coupled with KLA peptides through the half-maximal effective concentration values, approximately 70-fold higher compared to the conjugate analogs without Cys residues. Moreover, these thiomer-based pro-apoptotic drug nanoconjugates displayed higher lethality against U-87 MG cancer cells than doxorubicin, a model drug in chemotherapy, although extremely toxic. Remarkably, these peptidomimetic nanohybrids demonstrated a relative "protective effect" regarding healthy cells while maintaining high killing activity towards malignant brain cells. Conclusion: These findings pave the way for developing hybrid nanoarchitectures applied as targeted multifunctional platforms for simultaneous imaging and therapy against cancer while minimizing the high systemic toxicity and side-effects of conventional drugs in anticancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Belo Horizonte/MG, Brazil
| |
Collapse
|
2
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
3
|
Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 2016; 83:1365-1378. [DOI: 10.1016/j.biopha.2016.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
|
4
|
Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids Surf B Biointerfaces 2015; 130:237-45. [DOI: 10.1016/j.colsurfb.2015.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/23/2022]
|
5
|
Cao X, Tao L, Wen S, Hou W, Shi X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr Res 2015; 405:70-7. [DOI: 10.1016/j.carres.2014.06.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/19/2022]
|
6
|
Yu CY, Wang YM, Li NM, Liu GS, Yang S, Tang GT, He DX, Tan XW, Wei H. In Vitro and in Vivo Evaluation of Pectin-Based Nanoparticles for Hepatocellular Carcinoma Drug Chemotherapy. Mol Pharm 2014; 11:638-44. [DOI: 10.1021/mp400412c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui-Yun Yu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Yan-Mei Wang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Na-Mei Li
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Ge-Sha Liu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Sa Yang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Guo-Tao Tang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Xiang-Wen Tan
- Department
of Laboratory Animal Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Wen S, Liu H, Cai H, Shen M, Shi X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv Healthc Mater 2013; 2:1267-76. [PMID: 23447549 DOI: 10.1002/adhm.201200389] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/18/2012] [Indexed: 12/20/2022]
Abstract
We report the use of multifunctional dendrimer-modified multi-walled carbon nanotubes (MWCNTs) for targeted and pH-responsive delivery of doxorubicin (DOX) into cancer cells. In this study, amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers modified with fluorescein isothiocyanate (FI) and folic acid (FA) were covalently linked to acid-treated MWCNTs, followed by acetylation of the remaining dendrimer terminal amines to neutralize the positive surface potential. The formed multifunctional MWCNTs (MWCNT/G5.NHAc-FI-FA) were characterized via different techniques. Then, the MWCNT/G5.NHAc-FI-FA was used to load DOX for targeted and pH-responsive delivery to cancer cells overexpressing high-affinity folic acid receptors (FAR). We showed that the MWCNT/G5.NHAc-FI-FA enabled a high drug payload and encapsulation efficiency both up to 97.8% and the formed DOX/MWCNT/G5.NHAc-FI-FA complexes displayed a pH-responsive release property with fast DOX release under acidic environment and slow release at physiological pH conditions. Importantly, the DOX/MWCNT/G5.NHAc-FI-FA complexes displayed effective therapeutic efficacy, similar to that of free DOX, and were able to target to cancer cells overexpressing high-affinity FAR and effectively inhibit the growth of the cancer cells. The synthesized multifunctional dendrimer-modified MWCNTs may be used as a targeted and pH-responsive delivery system for targeting therapy of different types of cancer cells.
Collapse
Affiliation(s)
- Shihui Wen
- State Key Laboratory for Modification of Chemical, Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Jabbari E, Yang X, Moeinzadeh S, He X. Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur J Pharm Biopharm 2012; 84:49-62. [PMID: 23275111 DOI: 10.1016/j.ejpb.2012.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/09/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Abstract
An exciting approach to tumor delivery is encapsulation of the drug in self-assembled polymer-peptide nanoparticles. The objective of this work was to synthesize a conjugate of low molecular weight polylactide (LMW PLA) and V6K2 peptide and investigate self-assembly, drug release kinetics, cell uptake and toxicity, drug pharmacokinetics, and tumor cell invasion with Doxorubicin (DOX) or paclitaxel (PTX). The results for PLA-V6K2 self-assembled NPs were compared with those of polyethylene glycol stabilized PLA (PLA-EG) NPs. The size of PLA-V6K2 and PLA-EG NPs was 100 ± 20 and 130 ± 50 nm, respectively, with polydispersity index of 1.04 and 1.14. The encapsulation efficiency of DOX in PLA-V6K2 and PLA-EG NPs was 44 ± 9% and 55 ± 5%, respectively, and that of PTX was >90 for both NP types. The release of DOX and PTX from PLA-V6K2 was slower than that of PLA-EG, and the release rate was relatively constant with time. Based on molecular dynamic simulation, the less hydrophobic DOX was distributed in the lactide core as well as the peptide shell, while the hydrophobic PTX was localized mainly to the lactide core. PLA-V6K2 NPs had significantly higher cell uptake by 4T1 mouse breast carcinoma cells compared to PLA-EG NPs, which was attributed to the electrostatic interactions between the peptide and negatively charged moieties on the cell membrane. PLA-V6K2 NPs showed no toxicity to marrow stromal cells. DOX-loaded PLA-V6K2 NPs showed higher toxicity to 4T1 cells and the DNA damage response, and apoptosis was delayed compared to the free DOX. DOX or PTX encapsulated in PLA-V6K2 NPs significantly reduced invasion of 4T1 cells compared to those cells treated with the drug in PLA-EG NPs. Invasion of 4T1 cells treated with DOX in PLA-V6K2 and PLA-EG NPs was 5 ± 1% and 30 ± 5%, respectively, and that of PTX was 11 ± 2% and 40 ± 7%. The AUC of DOX in PLA-V6K2 NPs was 67% and 21% higher than those of free DOX and PLA-EG NPs, respectively. DOX-loaded PLA-V6K2 NPs injected in C3HeB/FeJ mice inoculated with MTCL syngeneic breast cancer cells displayed higher tumor toxicity than PLA-EG NPs and lower host toxicity than the free DOX. Cationic PLA-V6K2 NPs with higher tumor toxicity than the PLA-EG NPs are potentially useful in chemotherapy.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Department of Chemical Engineering, University of South Carolina, SC 29208, United States.
| | | | | | | |
Collapse
|
9
|
Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 2012; 159:2-13. [PMID: 22056916 PMCID: PMC3288222 DOI: 10.1016/j.jconrel.2011.10.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 01/22/2023]
Abstract
Peptides are attracting increasing attention as therapeutic agents, as the technologies for peptide development and manufacture continue to mature. Concurrently, with booming research in nanotechnology for biomedical applications, peptides have been studied as an important class of components in nanomedicine, and they have been used either alone or in combination with nanomaterials of every reported composition. Peptides possess many advantages, such as smallness, ease of synthesis and modification, and good biocompatibility. Their functions in cancer nanomedicine, discussed in this review, include serving as drug carriers, as targeting ligands, and as protease-responsive substrates for drug delivery.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
10
|
Grijalvo S, Eritja R. Synthesis and in vitro inhibition properties of oligonucleotide conjugates carrying amphipathic proline-rich peptide derivatives of the sweet arrow peptide (SAP). Mol Divers 2012; 16:307-17. [PMID: 22392648 DOI: 10.1007/s11030-012-9365-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/13/2012] [Indexed: 11/25/2022]
Abstract
In this study, a series of derivatives of the amphipathic proline-rich sweet arrow peptide (SAP) were covalently linked to antisense oligonucleotides designed to inhibit Renilla luciferase gene. Oligonucleotide-peptide conjugates carrying lysine (Lys) and ornithine (Orn) residues were prepared using the stepwise approach by assembling first the peptide sequence followed by the assembly of the DNA molecule. The resulting Lys, Orn-conjugates were transformed to the corresponding arginine and homoarginine oligonucleotide-peptide conjugates by reaction with O-methylisourea. The introduction of the SAP at 3'-termini of a phosphorothioate oligonucleotide did not affect the ability to inhibit gene expression when transfected with lipofectamine. However, these conjugates were not able to enter cells without transfecting agent. Further studies using SAP as a transfection agent showed promising results for the conjugates carrying the Orn-SAP. All conjugates showed high duplex stabilities.
Collapse
|
11
|
Suhorutsenko J, Oskolkov N, Arukuusk P, Kurrikoff K, Eriste E, Copolovici DM, Langel U. Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjug Chem 2011; 22:2255-62. [PMID: 21978260 DOI: 10.1021/bc200293d] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-penetrating peptide based vehicles have been developed for the delivery of different payloads into the cells in culture and in animals. However, several biological features, among which is the tendency to trigger innate immune response, limit the development of highly efficient peptide-based drug delivery vectors. This study aims to evaluate the influence of transportan 10 (TP10) and its chemically modified derivatives, PepFects (PFs), on the innate immune response of the host system. PFs have shown high efficiency in nucleic acid delivery in vitro and in vivo; hence, the estimation of their possible toxic side effects would be of particular interest. In this study, we analyzed cytotoxic and immunogenic response of PF3, PF4, and PF6 peptides in monocytic leukemia and peripheral blood mononuclear cell lines. In comparison with amphipathic PFs, TP10, TAT, stearyl-(RxR)(4) peptides, and the most widely used transfection reagents Lipofectamine 2000 and Lipofectamine RNAiMAX were also analyzed in this study. IL-1β, IL-18, and TNF-α cytokine release was detected using highly sensitive enzyme-linked immunosorbent assay (ELISA). Cell viability was detected by measuring the activity of cellular enzymes that reduce water-soluble tetrazolium salts to formazan dyes and apoptosis was evaluated by measuring the levels of caspase-1 and caspase-3/7 over untreated cells. All peptides were found to be nontoxic and nonimmunogenic in vitro at the concentrations of 10 μM and 5 μM, respectively, and at a dose of 5 mg/kg in vivo, suggesting that these CPPs exhibit a promising potential in the delivery of therapeutic molecules into the cell without risks of toxicity and inflammatory reactions.
Collapse
|
12
|
Franzen S. A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle. Expert Opin Drug Deliv 2011; 8:281-98. [DOI: 10.1517/17425247.2011.554816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kumari A, Yadav SK. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv 2011; 8:141-51. [DOI: 10.1517/17425247.2011.547934] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Alesker M, Heller A, Malik Z, Makarovsky I, Lellouche JP. Hybrid silica nanoparticles traceable by fluorescence and FT-IR spectroscopy: preparation, characterization and preliminary biological studies. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11555c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wang X, Gurski LA, Zhong S, Xu X, Pochan DJ, Farach-Carson MC, Jia X. Amphiphilic block co-polyesters bearing pendant cyclic ketal groups as nanocarriers for controlled release of camptothecin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2011; 22:1275-98. [PMID: 20594408 PMCID: PMC2974953 DOI: 10.1163/092050610x504260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphiphilic block co-polymers consisting of hydrophilic poly(ethylene glycol) and hydrophobic polyester bearing pendent cyclic ketals were synthesized by ring-opening co-polymerization of ε-caprolactone (CL) and 1,4,8-trioxaspiro-[4,6]-9-undecanone (TSU) using α-hydroxyl, ω-methoxy, poly(ethylene glycol) as the initiator and stannous octoate as the catalyst. Compositional analyses indicate that TSU was randomly distributed in the hydrophobic blocks. When the TSU content in the co-polymers increased, the polymer crystallinity decreased progressively and the glass transition temperature increased accordingly. The hydrophobic, anticancer drug, camptothecin (CPT), was successfully encapsulated in the block copolymer nanoparticles. The CPT encapsulation efficiency and release kinetics were strongly dependent on the co-polymer composition and crystallinity. CPT release from nanoparticles constructed from co-polymers containing 0, 39 and 100 mol% TSU in the hydrophobic block followed the same trend, with an initial burst of approx. 40% within one day followed by a moderate and slow release lasting up to 7 days. At a TSU content of 14 mol%, CPT was released in a continuous and controlled fashion with a reduced initial burst and a 73% cumulative release by day 7. The in vitro cytoxicity assay showed that the blank nanoparticles were not toxic to the cultured bone metastatic prostate cancer cells (C4-2B). Compared to the free drug, the encapsulated CPT was more effective in inducing apoptotic responses in C4-2B cells. Modulating the physical characteristics of the amphiphilic co-polymers via co-polymerization offers a facile method for controlling the bioavailability of anticancer drugs, ultimately increasing effectiveness and minimizing toxicity.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
| | - Lisa A. Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | - Sheng Zhong
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
| | - Xian Xu
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|