1
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
2
|
Sampathkumar K, Kerwin BA. Roadmap for Drug Product Development and Manufacturing of Biologics. J Pharm Sci 2024; 113:314-331. [PMID: 37944666 DOI: 10.1016/j.xphs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Therapeutic biology encompasses different modalities, and their manufacturing processes may be vastly different. However, there are many similarities that run across the different modalities during the drug product (DP) development process and manufacturing. Similarities include the need for Quality Target Product Profile (QTTP), analytical development, formulation development, container/closure studies, drug product process development, manufacturing and technical requirements set out by numerous regulatory documents such as the FDA, EMA, and ICH for pharmaceuticals for human use and other country specific requirements. While there is a plethora of knowledge on studies needed for development of a drug product, there is no specific guidance set out in a phase dependent manner delineating what studies should be completed in alignment with the different phases of clinical development from pre-clinical through commercialization. Because of this reason, we assembled a high-level drug product development and manufacturing roadmap. The roadmap is applicable across the different modalities with the intention of providing a unified framework from early phase development to commercialization of biologic drug products.
Collapse
Affiliation(s)
- Krishnan Sampathkumar
- SSK Biosolutions LLC, 14022 Welland Terrace, North Potomac, MD 20878, USA; Currently at Invetx, Inc., One Boston Place, Suite 3930, 201 Washington Street, Boston, MA 02108, USA
| | - Bruce A Kerwin
- Kerwin BioPharma Consulting LLC, 14138 Farmview Ln NE, Bainbridge Island, WA 98110, USA; Coriolis Scientific Advisory Board, Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Zhang Y, Schöneich C. Near UV light photo-degradation of histidine buffer: Mechanisms and role of Fe(III). Eur J Pharm Biopharm 2023; 190:231-241. [PMID: 37543156 DOI: 10.1016/j.ejpb.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Pharmaceutical formulations are sensitive to light-induced degradation. Recent studies have attributed some of the light sensitivity to the presence of Fe(III), the most prevalent metal leachable from pharmaceutical containers. Histidine (His) can promote Fe(III) leaching from stainless steel, especially at elevated storage temperatures. Since there is the chance that combinations of His and Fe(III) are present in pharmaceutical formulations, we investigated the photo-degradation mechanisms of Fe(III)-containing His buffer during expsoure to near UV light. Our results indicate the formation of carbon dioxide radical anion (•CO2-), a powerful reductant, and other photoproducts such as aldehydes and His-derived radicals. The generation of •CO2- can be promoted by increasing concentrations of Fe(III) and inhibited by the addition of the Fe(III) chelator EDTA. Mechanistically, product formation can be rationalized by photo-induced ligand-to-metal-charge-transfer (LMCT), followed by a series of radical transformations of reaction intermediates.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
4
|
Schöneich C. Primary Processes of Free Radical Formation in Pharmaceutical Formulations of Therapeutic Proteins. Biomolecules 2023; 13:1142. [PMID: 37509177 PMCID: PMC10376966 DOI: 10.3390/biom13071142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
5
|
Morales AM, Sreedhara A, Buecheler J, Brosig S, Chou D, Christian T, Das T, de Jong I, Fast J, Jagannathan B, Moussa EM, Nejadnik MR, Prajapati I, Radwick A, Rahman Y, Singh S. End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control Strategies for Protein-Based Therapeutics. AAPS J 2022; 25:6. [PMID: 36471030 DOI: 10.1208/s12248-022-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.
Collapse
Affiliation(s)
- Annette Medina Morales
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA.
| | - Alavattam Sreedhara
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jakob Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Sebastian Brosig
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Danny Chou
- Compassion BioSolution, LLC, Lomita, California, 90717, USA
| | | | - Tapan Das
- Analytical Development and Attribute Sciences, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Isabella de Jong
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Ehab M Moussa
- Drug Product Development, AbbVie, North Chicago, Illinios, 60064, USA
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA
| | | | - Yusra Rahman
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, Philadelphia, Pennsylvania, 19426, USA
| |
Collapse
|
6
|
Bluemel O, Anuschek M, Buecheler JW, Hoelzl G, Bechtold-Peters K, Friess W. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability – Part 1: Higher molecular weight species and subvisible particle formation. Int J Pharm X 2022; 4:100108. [PMID: 35024603 PMCID: PMC8724966 DOI: 10.1016/j.ijpx.2021.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Cryoconcentration upon large-scale freezing of monoclonal antibody (mAb) solutions leads to regions of different ratios of low molecular weight excipients, like buffer species or sugars, to protein. This study focused on the impact of the buffer species to mAb ratio on aggregate formation after frozen storage at −80 °C, −20 °C, and − 10 °C after 6 weeks, 6 months, and 12 months. An optimised sample preparation was established to measure Tg′ of samples with different mAb to histidine ratios via differential scanning calorimetry (DSC). After storage higher molecular weight species (HMWS) and subvisible particles (SVPs) were detected using size-exclusion chromatography (SEC) and FlowCam, respectively. For all samples, sigmoidal curves in DSC thermograms allowed to precisely determine Tg′ in formulations without glass forming sugars. Storage below Tg′ did not lead to mAb aggregation. Above Tg′, at −20 °C and − 10 °C, small changes in mAb and buffer concentration markedly impacted stability. Samples with lower mAb concentration showed increased formation of HMWS. In contrast, higher concentrated samples led to more SVPs. A shift in the mAb to histidine ratio towards mAb significantly increased overall stability. Cryoconcentration upon large-scale freezing affects mAb stability, although relative changes compared to the initial concentration are small. Storage below Tg′ completely prevents mAb aggregation and particle formation.
Collapse
|
7
|
Bluemel O, Buecheler JW, Hauptmann A, Hoelzl G, Bechtold-Peters K, Friess W. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability – part 2: Aggregate formation and oxidation. Int J Pharm X 2022; 4:100109. [PMID: 35024604 PMCID: PMC8724956 DOI: 10.1016/j.ijpx.2021.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
We examined the impact of monoclonal antibody (mAb) and buffer concentration, mimicking the cryoconcentration found upon freezing in a 2 L bottle, on mAb stability during frozen storage. Upon cryoconcentration, larger protein molecules and small excipient molecules freeze-concentrate differently, resulting in different protein to stabiliser ratios within a container. Understanding the impact of these shifted ratios on protein stability is essential. For two mAbs a set of samples with constant mAb (5 mg/mL) or buffer concentration (medium histidine/adipic acid) was prepared and stored for 6 months at −10 °C. Stability was evaluated via size-exclusion chromatography, flow imaging microscopy, UV/Vis spectroscopy at 350 nm, and protein A chromatography. Dynamic light scattering was used to determine kD values. Soluble aggregate levels were unaffected by mAb concentration, but increased with histidine concentration. No trend in optical density could be identified. In contrast, increasing mAb or buffer concentration facilitated the formation of subvisible particles. A trend towards attractive protein-protein interactions was seen with higher ionic strength. MAb oxidation levels were negatively affected by increasing histidine concentration, but became less with higher mAb concentration. Small changes in mAb and buffer composition had a significant impact on stability during six-month frozen storage. Thus, preventing cryoconcentration effects in larger freezing containers may improve long-term stability.
Collapse
Affiliation(s)
- Oliver Bluemel
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Jakob W. Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002 Basel, Switzerland
| | | | | | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
- Corresponding author.
| |
Collapse
|
8
|
Gupta S, Jiskoot W, Schöneich C, Rathore AS. Oxidation and Deamidation of Monoclonal Antibody Products: Potential Impact on Stability, Biological Activity, and Efficacy. J Pharm Sci 2021; 111:903-918. [PMID: 34890632 DOI: 10.1016/j.xphs.2021.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
The role in human health of therapeutic proteins in general, and monoclonal antibodies (mAbs) in particular, has been significant and is continuously evolving. A considerable amount of time and resources are invested first in mAb product development and then in clinical examination of the product. Physical and chemical degradation can occur during manufacturing, processing, storage, handling, and administration. Therapeutic proteins may undergo various chemical degradation processes, including oxidation, deamidation, isomerization, hydrolysis, deglycosylation, racemization, disulfide bond breakage and formation, Maillard reaction, and β-elimination. Oxidation and deamidation are the most common chemical degradation processes of mAbs, which may result in changes in physical properties, such as hydrophobicity, charge, secondary or/and tertiary structure, and may lower the thermodynamic or kinetic barrier to unfold. This may predispose the product to aggregation and other chemical modifications, which can alter the binding affinity, half-life, and efficacy of the product. This review summarizes major findings from the past decade on the impact of oxidation and deamidation on the stability, biological activity, and efficacy of mAb products. Mechanisms of action, influencing factors, characterization tools, clinical impact, and risk mitigation strategies have been addressed.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
9
|
Schöneich C. Photo-Degradation of Therapeutic Proteins: Mechanistic Aspects. Pharm Res 2020; 37:45. [DOI: 10.1007/s11095-020-2763-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
|
10
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
11
|
Wang T, Markham A, Thomas SJ, Wang N, Huang L, Clemens M, Rajagopalan N. Solution Stability of Poloxamer 188 Under Stress Conditions. J Pharm Sci 2019; 108:1264-1271. [DOI: 10.1016/j.xphs.2018.10.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/01/2022]
|
12
|
Lyophilized Drug Product Cake Appearance: What Is Acceptable? J Pharm Sci 2017; 106:1706-1721. [DOI: 10.1016/j.xphs.2017.03.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/23/2022]
|
13
|
Identification of leachables observed in the size exclusion chromatograms of a low concentration product stored in prefilled syringes. J Pharm Biomed Anal 2017; 139:133-142. [DOI: 10.1016/j.jpba.2017.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
|
14
|
Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of Buffers in Protein Formulations. J Pharm Sci 2016; 106:713-733. [PMID: 27894967 DOI: 10.1016/j.xphs.2016.11.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.
Collapse
Affiliation(s)
| | - Ryan E Holcomb
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Derrick S Katayama
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Brian M Murphy
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Robert W Payne
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Mark Cornell Manning
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
15
|
Wang C, Chen S, Brailsford JA, Yamniuk AP, Tymiak AA, Zhang Y. Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry. J Chromatogr A 2015; 1426:133-9. [DOI: 10.1016/j.chroma.2015.11.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/28/2022]
|
16
|
Wang C, Yamniuk A, Dai J, Chen S, Stetsko P, Ditto N, Zhang Y. Investigation of a Degradant in a Biologics Formulation Buffer Containing L-Histidine. Pharm Res 2015; 32:2625-35. [PMID: 25670525 DOI: 10.1007/s11095-015-1648-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE An unknown UV 280 nm absorbing peak was observed by SEC for protein stability samples formulated in L-histidine during a stress stability study. Understanding the source would enhance the confidence in the SEC results. We identified the unknown peak, studied the cause, and evaluated ways to eliminate it. METHODS The unknown peak was fractionated by preparative size exclusion chromatography separations, and subsequently analyzed by Hydrophilic Interaction Chromatography (HILIC) coupled with Time-of-Flight (TOF) high resolution mass spectrometry. The possible degradation was also studied with the presence of different excipients, including metal cations, chelating agents, and amino acids. RESULTS The unknown peak was identified to be trans-urocanic acid, a degradant of histidine, based on evidences from HILIC retention time, UV profile, accurate mass measurement, trans-cis isomerization, and pI measurement. The degradation from histidine to urocanic acids was not affected by the presence of Fe(2+), but slightly activated by Mn(2+). The chelating agents, EDTA and DTPA, counteracted the Mn(2+) effects. This degradation was evidenced to be caused by contamination. Adding alanine or cysteine as an excipient was found to reduce this degradation by 97 and 98%, respectively. CONCLUSIONS L-histidine formulation buffer can be contaminated to induce histidine degradation to trans-urocanic acid, which shows a large UV 280 nm absorbing peak at the total permeation volume under SEC conditions. Amino acids alanine and cysteine effectively inhibit this histidine degradation.
Collapse
Affiliation(s)
- Chunlei Wang
- Bioanalytical and Discovery Analytical Sciences, Research & Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey, 08543, USA,
| | | | | | | | | | | | | |
Collapse
|
17
|
Impact of Residual Impurities and Contaminants on Protein Stability. J Pharm Sci 2014; 103:1315-30. [DOI: 10.1002/jps.23931] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 02/03/2023]
|
18
|
Grewal P, Mallaney M, Lau K, Sreedhara A. Screening Methods to Identify Indole Derivatives That Protect against Reactive Oxygen Species Induced Tryptophan Oxidation in Proteins. Mol Pharm 2014; 11:1259-72. [DOI: 10.1021/mp4007375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Parbir Grewal
- Late Stage Pharmaceutical
Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mary Mallaney
- Late Stage Pharmaceutical
Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kimberly Lau
- Late Stage Pharmaceutical
Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alavattam Sreedhara
- Late Stage Pharmaceutical
Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins. Anal Chim Acta 2013; 792:79-85. [DOI: 10.1016/j.aca.2013.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022]
|