1
|
Shimizu T, Matsuzaki T, Fukuda S, Yoshioka C, Shimazaki Y, Takese S, Yamanaka K, Nakae T, Ishibashi M, Hamamoto H, Ando H, Ishima Y, Ishida T. Ionic Liquid-Based Transcutaneous Peptide Antitumor Vaccine: Therapeutic Effect in a Mouse Tumor Model. AAPS J 2023; 25:27. [PMID: 36805860 DOI: 10.1208/s12248-023-00790-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| | - Takaaki Matsuzaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shoichiro Fukuda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Chihiro Yoshioka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yuna Shimazaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shunsuke Takese
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Katsuhiro Yamanaka
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Takashi Nakae
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Masaki Ishibashi
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidetoshi Hamamoto
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
2
|
De Robertis M, Pasquet L, Loiacono L, Bellard E, Messina L, Vaccaro S, Di Pasquale R, Fazio VM, Rols MP, Teissie J, Golzio M, Signori E. In Vivo Evaluation of a New Recombinant Hyaluronidase to Improve Gene Electro-Transfer Protocols for DNA-Based Drug Delivery against Cancer. Cancers (Basel) 2018; 10:cancers10110405. [PMID: 30373297 PMCID: PMC6265783 DOI: 10.3390/cancers10110405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines based on plasmid DNA represent a good therapeutic perspective, despite their low potency. Animal-derived hyaluronidases (Hyals) are employed in oncological clinical practice. Hyal has been also demonstrated to be a good enhancer of intramuscular Gene Electro-Transfer (GET) efficiency in anti-cancer preclinical protocols, with increased transfected cells and higher expression of the encoded genes. Nevertheless, the use of animal-derived Hyals results limited respect to their potentialities, since such preparations could be affected by low purity, variable potency and uncertain safety. To improve the delivery of intramuscular GET-based protocols in mouse, we investigated a new recombinant Hyal, the rHyal-sk, to assess in vivo safety and activity of this treatment at cellular and biochemical levels. We evaluated the cellular events and the inflammation chemical mediators involved at different time points after rHyal-sk administration plus GET. Our results demonstrated the in vivo safety and efficacy of rHyal-sk when injected once intramuscularly in association with GET, with no toxicity, good plasmid in-take ability, useful inflammatory response activation, and low immunogenicity. Following these findings, we would recommend the use of the new rHyal-sk for the delivery of DNA-based vaccines and immunotherapy, as well as into clinical practice, for tumor disease treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", via Orabona 4, 70126 Bari, Italy.
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Lise Pasquet
- Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA.
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Luisa Loiacono
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- New Drug Modalities, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK.
| | - Elisabeth Bellard
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Luciano Messina
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Susanna Vaccaro
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Roberta Di Pasquale
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratorio di Oncologia, viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Justin Teissie
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Muriel Golzio
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
3
|
Guo S, Israel AL, Basu G, Donate A, Heller R. Topical gene electrotransfer to the epidermis of hairless guinea pig by non-invasive multielectrode array. PLoS One 2013; 8:e73423. [PMID: 24015305 PMCID: PMC3756005 DOI: 10.1371/journal.pone.0073423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after gene electrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest gene electrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Annelise L. Israel
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Gaurav Basu
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Amy Donate
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Chiarella P, De Santis S, Fazio VM, Signori E. Hyaluronidase contributes to early inflammatory events induced by electrotransfer in mouse skeletal muscle. Hum Gene Ther 2013; 24:406-16. [PMID: 23360544 DOI: 10.1089/hum.2012.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrotransfer of genes is one of the preferred strategies used to deliver plasmid DNA into skeletal muscle. In our experience, the combination of hyaluronidase (HYA) with electrotransfer (ET) of DNA vaccine enhances transfection of muscular fibers and increases expression of the encoded antigen. However, the contribution of HYA to the inflammatory reaction induced by ET, and its role in supporting ET adjuvancy, has never been investigated. We analyzed the events occurring in the first 2 weeks after electrotransfer to mouse muscle in the presence of HYA, to verify whether HYA contributes to the local inflammatory response induced by ET. Our results demonstrate that HYA amplifies the ET effect in terms of inflammatory cell recruitment enhancing the early release of interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 cytokines. In contrast, HYA does not induce helper T cell type 1 and 2 cytokine production, confirming that the DNA vaccine is indispensable to induce mediators of antigen-specific immune responses. We observed inflammatory cell migration in the muscle treated with HYA plus ET in a time window between days 4 and 7 after cytokine induction. These observations are important in the choice of prime-boost intervals for optimizing ET-based DNA vaccination protocols. Because HYA contributes to vaccine spread and enhances the proinflammatory effect of ET in muscle we strongly support the use of HYA to potentiate DNA vaccine efficacy.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | | | | | | |
Collapse
|
5
|
Karande P, Mitragotri S. Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng 2012; 1:175-201. [PMID: 22432578 DOI: 10.1146/annurev-chembioeng-073009-100948] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skin is an immunologically active tissue composed of specialized cells and agents that capture and process antigens to confer immune protection. Transcutaneous immunization takes advantage of the skin immune network by inducing a protective immune response against topically applied antigens. This mode of vaccination presents a novel and attractive approach for needle-free immunization that is safe, noninvasive, and overcomes many of the limitations associated with needle-based administrations. In this review we will discuss the developments in the field of transcutaneous immunization in the past decade with special emphasis on disease targets and vaccine delivery technologies. We will also briefly discuss the challenges that need to be overcome to translate early laboratory successes in transcutaneous immunization into the development of effective clinical prophylactics.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
6
|
Moulin V, Morgan ME, Eleveld-Trancikova D, Haanen JBAG, Wielders E, Looman MWG, Janssen RAJ, Figdor CG, Jansen BJH, Adema GJ. Targeting dendritic cells with antigen via dendritic cell-associated promoters. Cancer Gene Ther 2012; 19:303-11. [PMID: 22361816 DOI: 10.1038/cgt.2012.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The induction of tumor-specific immune responses is largely dependent on the ability of dendritic cells (DCs) to present tumor-associated antigens to T lymphocytes. Therefore, we investigated the use of DC-associated promoter-driven genetic vaccines to specifically target DC in vivo. Restricted expression of vaccine-encoding genes in DC should enhance specificity and improves their safety for clinical applications. Hereto, 3-5 kb upstream sequences of the murine genes encoding CD11c, DC-SIGN, DC-STAMP and Langerin were isolated, characterized and subcloned into enhanced green fluorescent protein (EGFP) reporter constructs. Upon electroporation, EGFP was expressed in DC cell lines, but not in other cell lines, confirming DC-restricted promoter activity. When these promoters were cloned into a construct upstream of the gene for ovalbumin (OVA), it appeared that DC-STAMP promoter-driven expression of OVA (pDCSTAMP/OVA) in DC yielded the most efficient OVA-specific CD4+ and CD8+ T-cell responses in vitro. Administration of pDC-STAMP/OVA in vivo, using the tattoo gun vaccination system, evoked specific immune responses as evidenced in a mouse tumor model. Adoptively transferred pDC-STAMP/OVA-transfected DCs induced strong CD8+ T-cell proliferation in vivo. These experiments demonstrate that our DC-directed promoter constructs are potential tools to restrict antigen expression in DC and could be implemented to modulate DC function by the introduction of relevant proteins.
Collapse
Affiliation(s)
- V Moulin
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cemazar M, Golzio M, Sersa G, Escoffre JM, Coer A, Vidic S, Teissie J. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Hum Gene Ther 2011; 23:128-37. [PMID: 21797718 DOI: 10.1089/hum.2011.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana , SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Intradermal (ID) vaccination can offer improved immunity and simpler logistics of delivery, but its use in medicine is limited by the need for simple, reliable methods of ID delivery. ID injection by the Mantoux technique requires special training and may not reliably target skin, but is nonetheless used currently for BCG and rabies vaccination. Scarification using a bifurcated needle was extensively used for smallpox eradication, but provides variable and inefficient delivery into the skin. Recently, ID vaccination has been simplified by introduction of a simple-to-use hollow microneedle that has been approved for ID injection of influenza vaccine in Europe. Various designs of hollow microneedles have been studied preclinically and in humans. Vaccines can also be injected into skin using needle-free devices, such as jet injection, which is receiving renewed clinical attention for ID vaccination. Projectile delivery using powder and gold particles (i.e., gene gun) have also been used clinically for ID vaccination. Building off the scarification approach, a number of preclinical studies have examined solid microneedle patches for use with vaccine coated onto metal microneedles, encapsulated within dissolving microneedles or added topically to skin after microneedle pretreatment, as well as adapting tattoo guns for ID vaccination. Finally, technologies designed to increase skin permeability in combination with a vaccine patch have been studied through the use of skin abrasion, ultrasound, electroporation, chemical enhancers, and thermal ablation. The prospects for bringing ID vaccination into more widespread clinical practice are encouraging, given the large number of technologies for ID delivery under development.
Collapse
Affiliation(s)
- Marcel B.M. Teunissen
- , Department of Dermatology, University of Amsterdam, Academic Medica, Meibergdreef 9, Amsterdam, 1105 AZ Netherlands
| |
Collapse
|
9
|
Voza T, Kebaier C, Vanderberg JP. Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malar J 2010; 9:362. [PMID: 21159170 PMCID: PMC3014973 DOI: 10.1186/1475-2875-9-362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intravenous injection of mice with attenuated Plasmodium berghei sporozoites induces sterile immunity to challenge with viable sporozoites. Non-intravenous routes have been reported to yield poor immunity. Because intravenous immunization has been considered to be unacceptable for large scale vaccination of humans, assessment was made of the results of intradermal immunization of mice with Plasmodium yoelii, a rodent malaria parasite whose infectivity resembles that of human malaria. METHODS Mice were immunized with two injections of isolated, radiation-attenuated P. yoelii sporozoites, either by intravenous (IV) or intradermal (ID) inoculation. In an attempt to enhance protective immunogenicity of ID-injections, one group of experimental mice received topical application of an adjuvant, Imiquimod, while another group had their injections accompanied by local "tape-stripping" of the skin, a procedure known to disrupt the stratum corneum and activate local immunocytes. Challenge of immunized and non-immunized control mice was by bite of sporozoite-infected mosquitoes. Degree of protection among the various groups of mice was determined by microscopic examination of stained blood smears. Statistical significance of protection was determined by a one-way ANOVA followed by Tukey's post hoc test. RESULTS Two intravenous immunizations produced 94% protection to mosquito bite challenge; intradermal immunization produced 78% protection, while intradermal immunization accompanied by "tape-stripping" produced 94% protection. There were no statistically significant differences in degree of protective immunity between immunizations done by intravenous versus intradermal injection. CONCLUSIONS The use of a sub-microlitre syringe for intradermal injections yielded excellent protective immunity. ID-immunization with large numbers of radiation-attenuated P. yoelii sporozoites led to levels of protective immunity comparable to those achieved by IV-immunization. It remains to be determined whether an adjuvant treatment can be found to substantially reduce the numbers of attenuated sporozoites required to achieve a strong protective immunity with as few doses as possible for possible extension to immunization of humans.
Collapse
Affiliation(s)
- Tatiana Voza
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | | | | |
Collapse
|
10
|
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J Control Release 2010; 148:266-82. [DOI: 10.1016/j.jconrel.2010.09.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023]
|
11
|
Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien MC, Cabodevila G, Mir LM, Préat V. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 2010; 236:117-25. [PMID: 20652559 DOI: 10.1007/s00232-010-9283-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
The association of microneedles with electric pulses causing electroporation could result in an efficient and less painful delivery of drugs and DNA into the skin. Hollow conductive microneedles were used for (1) needle-free intradermal injection and (2) electric pulse application in order to achieve electric field in the superficial layers of the skin sufficient for electroporation. Microneedle array was used in combination with a vibratory inserter to disrupt the stratum corneum, thus piercing the skin. Effective injection of proteins into the skin was achieved, resulting in an immune response directed to the model antigen ovalbumin. However, when used both as microneedles to inject and as electrodes to apply the electric pulses, the setup showed several limitations for DNA electrotransfer. This could be due to the distribution of the electric field in the skin as shown by numerical calculations and/or the low dose of DNA injected. Further investigation of these parameters is needed in order to optimize minimally invasive DNA electrotransfer in the skin.
Collapse
Affiliation(s)
- Liévin Daugimont
- Louvain Drug Research Institute, Unité de pharmacie galénique, Université Catholique de Louvain, Avenue E. Mounier 73/20, 1200, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|