1
|
Onoue S. New Drug Delivery Systems for Stable Oral Absorption: Theory, Strategies, and Applications. Biol Pharm Bull 2024; 47:1797-1803. [PMID: 39496383 DOI: 10.1248/bpb.b24-00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The oral dosage route still remains the most common and preferred route for drug administration due to convenient handling, high patient compliance, and cost-effectiveness. However, the oral absorption of drugs can be a complex process depending upon: (i) physicochemical properties of the drug (e.g., pKa, lipophilicity, solubility), (ii) pharmaceutical factors (e.g., dosage form), and (iii) physiological factors (e.g., gastrointestinal pH values, gastric emptying rate, gastric and intestinal pH, metabolism). Oral administration of drugs sometimes leads to poor and/or variable oral bioavailability, possible leading to unstable clinical outcomes. To offer stable and improved pharmacokinetic behavior of drugs, a number of formulation approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of drugs. To provide new formulation platforms for better and safe medication, it is considered essential to understand the physicochemical, biochemical, metabolic, and biological barriers which limit overall drug bioavailability in more detail. The review article considers several crucial factors affecting oral absorption of drug substances. This article also describes the recent progress in formulation approaches to achieve stable and improved biopharmaceutical properties of orally-taken drugs.
Collapse
Affiliation(s)
- Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
2
|
Huang S, Venables DS, Lawrence SE. Pharmaceutical Salts of Piroxicam and Meloxicam with Organic Counterions. CRYSTAL GROWTH & DESIGN 2022; 22:6504-6520. [PMID: 36817751 PMCID: PMC9933440 DOI: 10.1021/acs.cgd.2c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Indexed: 06/18/2023]
Abstract
Piroxicam (PRM) and meloxicam (MEL) are two nonsteroidal anti-inflammatory drugs, belonging to the Biopharmaceutics Classification System Class II drugs. In this study, six novel pharmaceutical salts of PRM and MEL with three basic organic counterions, that is, 4-aminopyridine (4AP), 4-dimethylaminopyridine (4DMP), and piperazine (PPZ), were prepared by both slurrying and slow evaporation. These salts were characterized by single-crystal and powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy. All six salts, especially MEL-4DMP and MEL-4AP, showed a significantly improved apparent solubility and dissolution rate in sodium phosphate solution compared with the pure APIs. Notably, PRM-4AP and PRM-4DMP salts exhibited enhanced fluorescence, and the PRM-PPZ salt showed weaker fluorescence compared with that of pure PRM due to different luminescence mechanisms.
Collapse
Affiliation(s)
- Shan Huang
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Dean S. Venables
- School
of Chemistry and Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
| | - Simon E. Lawrence
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
3
|
Navarro-Ruíz E, Álvarez-Álvarez C, Peña MÁ, Torrado-Salmerón C, Dahma Z, de la Torre-Iglesias PM. Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14071504. [PMID: 35890399 PMCID: PMC9322124 DOI: 10.3390/pharmaceutics14071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0–7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.
Collapse
Affiliation(s)
- Eva Navarro-Ruíz
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain;
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| |
Collapse
|
4
|
Lu X, Li M, Arce FA, Ling J, Setiawan N, Wang Y, Shi X, Campbell HR, Nethercott MJ, Xu W, Munson EJ, Marsac PJ, Su Y. Mechanistic Investigation of Drug Supersaturation in the Presence of Polysorbates as Solubilizing Additives by Solution Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2021; 18:4310-4321. [PMID: 34761934 DOI: 10.1021/acs.molpharmaceut.1c00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of solubilizing additives has historically been an attractive approach to address the ever-growing proportion of poorly water-soluble drug (PWSD) compounds within the modern drug discovery pipeline. Lipid-formulations, and more specifically micelle formulations, have garnered particular interest because of their simplicity, size, scalability, and avoidance of solid-state limitations. Although micelle formulations have been widely utilized, the molecular mechanism of drug solubilization in surfactant micelles is still poorly understood. In this study, a series of modern nuclear magnetic resonance (NMR) methods are utilized to gain a molecular-level understanding of intermolecular interactions and kinetics in a model system. This approach enabled the understanding of how a PWSD, 17β-Estradiol (E2), solubilizes within a nonionic micelle system composed of polysorbate 80 (PS80). Based on one-dimensional (1D) 1H chemical shift differences of E2 in PS80 solutions, as well as intermolecular correlations established from 1D selective nuclear Overhauser effect (NOE) and two-dimensional NOE spectroscopy experiments, E2 was found to accumulate within the palisade layer of PS80 micelles. A potential hydrogen-bonding interaction between a hydroxyl group of E2 and a carbonyl group of PS80 alkane chains may allow for stabilizing E2-PS80 mixed micelles. Diffusion and relaxation NMR analysis and particle size measurements using dynamic light scattering indicate a slight increase in the micellar size with increasing degrees of supersaturation, resulting in slower mobility of the drug molecule. Based on these structural findings, a theoretical orientation model of E2 molecules with PS80 molecules was developed and validated by computational docking simulations.
Collapse
Affiliation(s)
- Xingyu Lu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Mingyue Li
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Freddy A Arce
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jing Ling
- Pharmaceutical Sciences, Merck & Co., South San Francisco, California 94080, United States
| | - Nico Setiawan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heather R Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - Wei Xu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Emam MF, Taha NF, Mursi NM, Emara LH. Preparation, characterization and in-Vitro/in-Vivo evaluation of meloxicam extruded pellets with enhanced bioavailability and stability. Drug Dev Ind Pharm 2020; 47:163-175. [PMID: 33297790 DOI: 10.1080/03639045.2020.1862175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The present study involved enhancement of Meloxicam (MX) oral absorption for rapid onset of therapeutic action. A challenging approach using hot-melt-extrusion technique (HME) for production of stable novel preparation of MX pellets was successfully proposed. METHODS Manipulating HME processing parameters (barrel-temperatures and screw-speed) and proper polymer(s) selection (Soluplus, a combination of Soluplus/Poloxamar and Polyethylene Glycol 6000) were the main strategies involved for productive extrusion of MX. Evaluation of MX solid-state (TGA, DSC and PLM), absolute percent crystallinity, in-vitro dissolution (in acidic/aqueous pHs), and stability testing in accelerated conditions up to 6-months as well as a long-term shelf for 36-months were performed. A comparative bioavailability study of selected MX-Pellets was carried-out against the innovator product (Mobic®) in 6 healthy volunteers under fed-conditions. RESULTS TGA, DSC and PLM analyses proved the dispersion of MX in amorphous-state within polymeric matrix by HME. MX/Soluplus pellets exhibited the lowest crystallinity % and best dissolution performance among other polymers in both pHs. In addition, presence of Soluplus safeguards final pellets stability under different storage conditions. MX rate of absorption (Tmax) from Soluplus-based pellets attained a value of 45 min, which was 6-times faster than Mobic® (4.5 hr). CONCLUSION A promising oral MX formula prepared by HME was successfully developed with a rapid onset of analgesic action (Tmax of 45 mins; almost 2-times faster than reported intramuscular injection), hence appropriate in the early relief of pain associated with rheumatoid arthritis and osteoarthritis. Moreover, the proposed formula was physico-chemically stable up to 36 months of shelf-life storage.
Collapse
Affiliation(s)
- Maha F Emam
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Nesrin F Taha
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Nadia M Mursi
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila H Emara
- Industrial Pharmacy Laboratory, Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
6
|
The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. Eur J Pharm Sci 2020; 152:105422. [PMID: 32531350 DOI: 10.1016/j.ejps.2020.105422] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Cocrystals that are more soluble than the constituent drug, generate supersaturation levels during dissolution and are predisposed to conversion to the less soluble drug. Drug release studies during cocrystal dissolution generally compare several cocrystals and their crystal structures. However, the influence of drug dose and solubility in different dissolution media has been scarcely reported. The present study aims to investigate how drug dose/solubility ratio (Do=Cdose/Sdrug), cocrystal solubility advantage over drug (SA=Scocrystal/Sdrug), and dissolution media affect cocrystal dissolution-drug supersaturation and precipitation (DSP) behavior. SA and Ksp values of 1:1 cocrystals of meloxicam-salicylic acid (MLX-SLC) and meloxicam-maleic acid (MLX-MLE) were determined at cocrystal/drug eutectic points. Results demonstrate that both cocrystals enhance SA by orders of magnitude (20 to 100 times for the SLC and over 300 times for the MLE cocrystal) in the pH range of 1.6 to 6.5. It is shown that during dissolution, cocrystals regulate the interfacial pH (pHint) to 1.6 for MLX-MLE and 4.5 for MLX-SLC, therefore diminishing the cocrystal dissolution rate dependence on bulk pH. Do values ranged from 2 (pH 6.5) to 410 (pH 1.6) and were mostly determined by the drug solubility dependence on pH. Drug release profiles show that maximum supersaturation (σmax=Cmax/Sdrug)and AUC increased with increasing Do as pH decreased. When Do>>SA, the cocrystal solubility is not sufficient to dissolve the dose so that a dissolution-precipitation quasi-equilibrium state is able to sustain supersaturation for the extent of the experiment (24 h). When Do<<SA, cocrystal solubility is more than adequate to dissolve the dose. Low σmax values (1.7 and 1.5) near the value of Do (2.3 and 2.4) were observed, where a large fraction of the cocrystal added is dissolved to reach σmax. Two different cocrystal to drug conversion pathways were observed: (1) surface nucleation of the metastable MLX polymorph IV on the dissolving cocrystal preceeded formation of the stable MLX polymorph I in bulk solution (in all conditions without FeSSIF), and (2) bulk nucleation of the stable MLX polymorph (in FeSSIF). The interplay between cocrystal SA, Do, and drug precipitation pathways provide a framework to interpret and understand the DSP behavior of cocrystals.
Collapse
|
7
|
Yakushiji K, Sato H, Ogino M, Suzuki H, Seto Y, Onoue S. Self-Emulsifying Drug Delivery System of Celecoxib for Avoiding Delayed Oral Absorption in Rats with Impaired Gastric Motility. AAPS PharmSciTech 2020; 21:135. [PMID: 32419073 DOI: 10.1208/s12249-020-01686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a self-emulsifying drug delivery system (SEDDS) of celecoxib (CEL) for suppressed delay in oral absorption under impaired gastric motility. A pseudo-ternary phase diagram was constructed for the determination of the optimal component ratio in SEDDS of CEL (SEDDS/CEL), and the SEDDS/CEL was physicochemically characterized. A pharmacokinetic study on orally dosed CEL samples (5-mg CEL/kg) was carried out in normal and propantheline (PPT)-treated rats to mimic impaired gastric motility. SEDDS/CEL rapidly formed a fine emulsion with a mean size of 147 nm in distilled water and significantly improved the dissolution behavior of CEL under pH 1.2 condition with a 20-fold higher dissolved amount than crystalline CEL. In normal rats, orally dosed SEDDS/CEL provided a 4.6-fold higher systemic exposure than that of crystalline CEL, due to the improved dissolution properties of CEL. Crystalline CEL showed delayed and decreased oral absorption of CEL in PPT-treated rats as evidenced by a 6.9-h-delayed mean absorption time and only 12% of the systemic exposure of CEL compared with those in normal rats. In contrast, SEDDS/CEL enhanced the oral absorption of CEL with a 14.6-fold higher systemic exposure with significant suppression of delay in absorption than crystalline CEL even in PPT-treated rats. SEDDS/CEL could be an efficacious option for suppressing delay in CEL absorption even under impairment of gastric motility, possibly leading to rapid and reproducible management of severe acute pain.
Collapse
|
8
|
Ruponen M, Rusanen H, Laitinen R. Dissolution and Permeability Properties of Co-Amorphous Formulations of Hydrochlorothiazide. J Pharm Sci 2020; 109:2252-2261. [PMID: 32315662 DOI: 10.1016/j.xphs.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
A biopharmaceutics classification system class IV drug, hydrochlorothiazide (HCT), was combined with co-formers of L-and d-arginine (ARG) and sodium lauryl sulphate (SLS) by cryomilling in 1:1 molar ratio. Co-amorphization was observed with L- and D-ARG. These mixtures showed a single glass transition, evidence of possible salt formation and improved physical stability at elevated temperatures and/or humidity when compared with amorphous HCT. The co-amorphous formulations, along with the combinations of HCT and HCT:L-ARG with polyvinylpyrrolidone (PVP) in 1:1 mass ratio, were investigated with a simultaneous dissolution/permeation setup using parallel artificial membrane permeability assay (PAMPA) or Madine Darby kidney cells (MDCKII) as the permeation barrier. It was observed that co-amorphization with L-ARG and D-ARG was able to induce a supersaturated state for HCT, possibly through intermolecular interactions, but there was virtually no difference between the dissolution properties of the mixtures formed with the 2 optical isomers of ARG. The permeability of HCT was found to be dependent on the dissolution properties of the formulations in both PAMPA and cellular barrier experiments. Thus, co-amorphization of HCT with L- and D-ARG demonstrated the possibility to enhance the dissolution and thereby the permeation potential of a BCS class IV drug.
Collapse
Affiliation(s)
- Marika Ruponen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Henna Rusanen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Riikka Laitinen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
9
|
Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. Int J Pharm 2019; 563:395-405. [DOI: 10.1016/j.ijpharm.2019.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
|
10
|
Yakushiji K, Ogino M, Suzuki H, Seto Y, Sato H, Onoue S. Physicochemical and biopharmaceutical characterization of celecoxib nanoparticle: Avoidance of delayed oral absorption caused by impaired gastric motility. Int J Pharm 2018; 552:453-459. [PMID: 30253211 DOI: 10.1016/j.ijpharm.2018.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
The present study aimed to develop a celecoxib (CEL) nanoparticle with improved dissolution/dispersion and consistent absorption even in the presence of impaired gastric motility. CEL was pulverized by a wet-milling with hydroxypropyl cellulose (HPC), and the prepared nanoparticles were physicochemically characterized after freeze-drying. CEL nanoparticle with HPC-SSL (NP/CEL) exhibited better dissolution/dispersion behavior in pH1.2 solution compared with CEL nanoparticles with other polymers, as evidenced by a 21.8-fold higher initial dissolution/dispersion rate than crystalline CEL. The mean particle diameter of water suspended-NP/CEL was 250 nm, and the CEL nanoparticle existed in an amorphous state. Even after storage at 40 °C for 4 weeks, there were no significant changes in the dissolution/dispersion behavior. Oral absorption of CEL samples (5 mg-CEL/kg) was evaluated in normal and propantheline (PPT)-treated rats with simulated gastric motility impairment. In PPT-treated rats, oral crystalline CEL led to a decrease in oral absorption by 12% of the AUC0-4 compared with that in normal rats, whereas NP/CEL suppressed the pharmacokinetic transition of CEL by 43% of the AUC0-4 due to the improved dissolution/dispersion behavior of CEL. The NP/CEL system might be promising to avoid decreased absorption of CEL caused by impaired gastric motility.
Collapse
Affiliation(s)
- Keisuke Yakushiji
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mizuki Ogino
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Suzuki
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
11
|
Ruponen M, Visti M, Ojarinta R, Laitinen R. Permeability of glibenclamide through a PAMPA membrane: The effect of co-amorphization. Eur J Pharm Biopharm 2018; 129:247-256. [DOI: 10.1016/j.ejpb.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
12
|
Song Q, Shen C, Shen B, Lian W, Liu X, Dai B, Yuan H. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Suzuki H, Yakushiji K, Matsunaga S, Yamauchi Y, Seto Y, Sato H, Onoue S. Amorphous Solid Dispersion of Meloxicam Enhanced Oral Absorption in Rats With Impaired Gastric Motility. J Pharm Sci 2017; 107:446-452. [PMID: 28551427 DOI: 10.1016/j.xphs.2017.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 11/29/2022]
Abstract
Meloxicam (MEL) shows a slow onset of action in severe pain patients on account of delayed gastric motility. This study aimed to develop an amorphous solid dispersion (ASD) of MEL to achieve rapid oral absorption in severe pain patients. ASD formulations of MEL with hydroxypropylmethylcellulose (ASD-MEL/HPMC) and polyacrylates and polymethacrylates (ASD-MEL/EUD) were prepared and physicochemically characterized. Oral absorption behavior of MEL samples was also clarified in both normal and propantheline (PPT)-pretreated rats with impaired gastric motility. MEL in the formulations was amorphous, and ASD formulations of MEL exhibited high dissolution behavior in acidic solution. After oral administration of crystalline MEL (1 mg-MEL/kg), a 69% reduction in AUC0-4 was observed between normal and PPT-pretreated rats. For orally dosed ASD-MEL/HPMC (1 mg-MEL/kg), there were approximately 9- and 12-fold increases of AUC0-4 in normal and PPT-pretreated rats, respectively, in comparison with crystalline MEL (1 mg-MEL/kg). However, the oral absorption behavior of ASD-MEL/EUD (1 mg-MEL/kg) was low and similar to that of crystalline MEL. The infrared spectroscopic study revealed potent interactions between MEL and EUD, possibly leading to marked attenuation of MEL absorption. This ASD approach might provide rapid oral absorption of MEL in severe pain patients, possibly leading to better clinical outcomes.
Collapse
Affiliation(s)
- Hiroki Suzuki
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Keisuke Yakushiji
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Saori Matsunaga
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Yukinori Yamauchi
- Department of Pharmaceutical Physical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo, Matsuyama, Ehime, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan.
| |
Collapse
|
14
|
Nagy E, Vajda E, Vari C, Sipka S, Fárr AM, Horváth E. Meloxicam ameliorates the cartilage and subchondral bone deterioration in monoiodoacetate-induced rat osteoarthritis. PeerJ 2017; 5:e3185. [PMID: 28413731 PMCID: PMC5391791 DOI: 10.7717/peerj.3185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/14/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE This study aimed to quantify the cartilage- and subchondral bone-related effects of low-dose and high-dose meloxicam treatment in the late phase of mono-iodoacetate-induced osteoarthritis of the stifle. METHODS Thirty-four male Wistar rats received intra-articular injection of mono-iodoacetate to trigger osteoarthritis; 10 control animals (Grp Co) received saline. The mono-iodoacetate-injected rats were assigned to three groups and treated from week 4 to the end of week 7 with placebo (Grp P, n = 11), low-dose (GrpM Lo, 0.2 mg/kg, n = 12) or high-dose (GrpM Hi, 1 mg/kg, n = 11) meloxicam. After a period of 4 additional weeks (end of week 11) the animals were sacrificed, and the stifle joints were examined histologically and immunohistochemically for cyclooxygenase 2, in conformity with recommendations of the Osteoarthritis Research Society International. Serum cytokines IL-6, TNFα and IL-10 were measured at the end of weeks 3, 7, and 11. RESULTS Compared with saline-treated controls, animals treated with mono-iodoacetate developed various degrees of osteoarthritis. The cartilage degeneration score and the total cartilage degeneration width were significantly lower in both the low-dose (p = 0.012 and p = 0.014) and high-dose (p = 0.003 and p = 0.006) meloxicam-treated groups than in the placebo group. In the subchondral bone, only high-dose meloxicam exerted a significant protective effect (p = 0.011). Low-grade Cox-2 expression observed in placebo-treated animals was abolished in both meloxicam groups. Increase with borderline significance of TNFα in GrpP from week 3 to week 7 (p = 0.049) and reduction of IL-6 in GrpM Lo from week 3 to week 11 (p = 0.044) were observed. CONCLUSION In this rat model of osteoarthritis, both low-dose and high-dose meloxicam had a chondroprotective effect, and the high dose also protected against subchondral bone lesions. The results suggest a superior protection of the high-dose meloxicam arresting the low-grade inflammatory pathway accompanied by chronic cartilage deterioration.
Collapse
Affiliation(s)
- Előd Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine and Pharmacy, Targu-Mures, Romania
| | - Enikő Vajda
- Department of Drug Analysis, University of Medicine and Pharmacy, Targu-Mures, Romania
| | - Camil Vari
- Department of Pharmacology, University of Medicine and Pharmacy of Targu Mures, Targu-Mures, Romania
| | - Sándor Sipka
- Division of Clinical Immunology, Department of Internal Medicine, University of Debrecen, Hungary
| | - Ana-Maria Fárr
- Department of Pathophysiology, University of Medicine and Pharmacy, Targu-Mures, Romania
| | - Emőke Horváth
- Department of Pathology, University of Medicine and Pharmacy, Targu-Mures, Romania
| |
Collapse
|
15
|
Poce G, Consalvi S, Cocozza M, Fernandez-Menendez R, Bates RH, Ortega Muro F, Barros Aguirre D, Ballell L, Biava M. Pharmaceutical salt of BM635 with improved bioavailability. Eur J Pharm Sci 2016; 99:17-23. [PMID: 27939618 DOI: 10.1016/j.ejps.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022]
Abstract
BM635 is a small molecule endowed with outstanding anti-mycobacterial activity (minimum inhibitory concentration of 0.12μM against M. tuberculosis H37Rv) identified during a hit-to-lead campaign. Its poor aqueous solubility together with its high lipophilicity led to low exposure in vivo. Indeed, the half-life in vivo of BM635 was 1h, allowing a reasonable maximum concentration (Cmax=1.62μM) and a moderate bioavailability (46%). The present study aimed to develop salt forms of BM635 with pharmaceutically accepted hydrochloric, methanesulphonic, phosphoric, tartaric, and citric acids to overcome these drawbacks. BM635 salts (BM635-HCl, BM635-Mes, BM635-PA, BM635-TA and BM635-CA) were evaluated for physicochemical as well as biopharmaceutical attributes.
Collapse
Affiliation(s)
- Giovanna Poce
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy.
| | - Sara Consalvi
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Martina Cocozza
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Raquel Fernandez-Menendez
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Madrid, Spain
| | - Robert H Bates
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Madrid, Spain
| | - Fátima Ortega Muro
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Madrid, Spain
| | - David Barros Aguirre
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Madrid, Spain
| | - Lluis Ballell
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Madrid, Spain
| | - Mariangela Biava
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
16
|
2,1-Benzothiazine 2,2-Dioxides. 3*. 4-Hydroxy-1-Methyl-2,2-Dioxo-N-(1,3-Thiazol-2-yl)-1Н-2λ6,1-Benzothiazine-3-Carboxamides – a New Group of Potential Analgetics. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|