1
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
2
|
Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, Wegener S, Weber B, El Amki M, Ahmed D. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat Commun 2023; 14:5889. [PMID: 37735158 PMCID: PMC10514062 DOI: 10.1038/s41467-023-41557-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
The intricate and delicate anatomy of the brain poses significant challenges for the treatment of cerebrovascular and neurodegenerative diseases. Thus, precise local drug delivery in hard-to-reach brain regions remains an urgent medical need. Microrobots offer potential solutions; however, their functionality in the brain remains restricted by limited imaging capabilities and complications within blood vessels, such as high blood flows, osmotic pressures, and cellular responses. Here, we introduce ultrasound-activated microrobots for in vivo navigation in brain vasculature. Our microrobots consist of lipid-shelled microbubbles that autonomously aggregate and propel under ultrasound irradiation. We investigate their capacities in vitro within microfluidic-based vasculatures and in vivo within vessels of a living mouse brain. These microrobots self-assemble and execute upstream motion in brain vasculature, achieving velocities up to 1.5 µm/s and moving against blood flows of ~10 mm/s. This work represents a substantial advance towards the therapeutic application of microrobots within the complex brain vasculature.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Yann Ferry
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Carole Frei
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Susanne Wegener
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland.
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| |
Collapse
|
3
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
4
|
White AL, Bix GJ. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases. Biomolecules 2023; 13:biom13040702. [PMID: 37189449 DOI: 10.3390/biom13040702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Therapeutic angiogenesis has long been considered a viable treatment for vasculature disruptions, including cerebral vasculature diseases. One widely-discussed treatment method to increase angiogenesis is vascular endothelial growth factor (VEGF) A. In animal models, treatment with VEGFA proved beneficial, resulting in increased angiogenesis, increased neuronal density, and improved outcome. However, VEGFA administration in clinical trials has thus far failed to replicate the promising results seen in animal models. The lack of beneficial effects in humans and the difficulty in medicinal translation may be due in part to administration methods and VEGFA's ability to increase vascular permeability. One solution to mitigate the side effects of VEGFA may be found in the VEGFA isoforms. VEGFA is able to produce several different isoforms through alternative splicing. Each VEGFA isoform interacts differently with both the cellular components and the VEGF receptors. Because of the different biological effects elicited, VEGFA isoforms may hold promise as a tangible potential therapeutic for cerebrovascular diseases.
Collapse
Affiliation(s)
- Amanda Louise White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
5
|
Wang Y, Niu H, Li L, Han J, Liu Z, Chu M, Sha X, Zhao J. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnology 2023; 21:109. [PMID: 36967397 PMCID: PMC10041751 DOI: 10.1186/s12951-023-01862-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Ferroptosis plays a critical role in ischemic stroke, and anti-ferroptosis strategies were regarded as potentially effective measures. Based on ferroptosis-related mechanisms, this study aims to design and prepare anti-ferroptosis exosomes from adipose-derived mesenchymal stem cells (ADSC-Exo) for treating ischemic brain injury via intranasal (IN) administration. According to the bioinformatic analysis, CHAC1 was a key gene in the progress of ferroptosis in ischemic stroke. miR-760-3p can inhibit the expression of CHAC1 and may be abundant in ADSC-Exo. Therefore, ADSC-Exo were successfully isolated and the immunofluorescence showed that they can be efficiently delivered to the brain via IN administration. Additionally, IN administration of ADSC-Exo can effectively improve the neurobehavior function of mice after I/R, and improve the ferroptosis-related outcomes. As the immunofluorescence showed the co-localization of NeuN with CHAC1 obviously, we further evaluated the systematic effect of ADSC-Exo in an oxygen-glucose deprivation (OGD) mouse neuroblastoma cell line N2a model. The results showed that miR-760-3p in ADSC-Exo contributed to their function in inhibiting ferroptosis by targeting CHAC1 in neurons. Collectively, the present study successfully designed and prepared anti-CHAC1 ADSC-Exo and suggested a promising exosome-based strategy for anti-ferroptosis therapy in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yong Wang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Huicong Niu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Luyu Li
- grid.16821.3c0000 0004 0368 8293Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Han
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhuohang Liu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Min Chu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Xianyi Sha
- grid.8547.e0000 0001 0125 2443Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203 China
- grid.8547.e0000 0001 0125 2443The Institutes of Integrative Medicine, Fudan University, 120 Urumqi Middle Road, Shanghai, 200040 China
| | - Jing Zhao
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| |
Collapse
|
6
|
Kim M, Oh J, Lee Y, Lee EH, Ko SH, Jeong JH, Park CH, Lee M. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J Control Release 2022; 350:471-485. [PMID: 36041589 DOI: 10.1016/j.jconrel.2022.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Ischemic stroke is caused by the occlusion of cerebral arteries. In the ischemic stroke, ischemia-reperfusion injury increases the damage in the brain after reperfusion. In the previous study, heme oxygenase-1 (HO1) mRNA was delivered into the ischemic brain, showing that HO1-mRNA had higher therapeutic effect and less side-effect than HO1-plasmid (pHO1). However, mRNA is degraded faster than plasmid DNA reducing the duration of gene expression. In this study, self-replicating mRNA (Rep-mRNA) was developed using a replicon system from Venezuelan Equine Encephalitis virus to compensate this disadvantage of mRNA delivery. Deoxycholic acid-conjugated polyethylenimine (DA-PEI) was used as a carrier of the mRNA. The Rep-mRNA/DA-PEI complex had a size of around 90 nm and a zeta-potential of 33 mV. In the in vitro transfection assays, gene expression by the HO1-Rep-mRNA/DA-PEI complex persisted at least 14 days, while that by the HO1-mRNA/DA-PEI complex approached basal level at 3 days after transfection. Therapeutic effects of the HO1-Rep-mRNA/DA-PEI complexes were evaluated in the ischemic stroke animal models. The complexes were injected into the brain stereotaxically. HO1 expression by the HO1-Rep-mRNA/DA-PEI complex persisted at least 7 days after injection, but the pHO1/DA-PEI or HO1-mRNA/DA-PEI complex showed basal level of HO1-expression at 7 days after injection. Due to higher and longer expression of HO1, the apoptosis level and infarct size were decreased by the HO1-Rep-mRNA/DA-PEI complexes, compared with the pHO1/DA-PEI and HO1-mRNA/DA-PEI complex. These results suggest that HO1-Rep-mRNA/DA-PEI complex may have a potential as a long-lasting therapeutic system for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea
| | - Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea
| | - Youngki Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea
| | - Eun-Hye Lee
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji Hoon Jeong
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hwan Park
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Song MM, Chen J, Ye SM, Lu DP, Zhang GY, Liu R, Shen YX. Targeted delivery of edaravone by liposomes for the treatment of ischemic stroke. Nanomedicine (Lond) 2022; 17:741-752. [PMID: 35506304 DOI: 10.2217/nnm-2021-0490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To construct an edaravone-encapsulated liposomes (EDV-LIPs) formulation against acute ischemic stroke. Methods: EDV-LIPs were prepared by the film dispersion method. The biosafety was evaluated both in vitro and in vivo by flow cytometry and the histological staining method. Biodistribution and therapeutic effect of EDV-LIPs against acute ischemic stroke was investigated by fluorescent imaging, the behavior test, laser speckle imaging and triphenyltetrazolium chloride staining. Results: The nanoliposomes had a long circulation time and could accumulate in the brain lesion region in ischemic stroke rats. EDV-LIPs show good biosafety. EDV-LIPs could restore more cerebral blood flow, reduce infarct volume and decrease neuronal apoptosis. Conclusion: EDV-LIPs provide an effective alternative for drug-targeted delivery against acute ischemic stroke.
Collapse
Affiliation(s)
- Meng-Meng Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Jing Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China.,Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Shu-Ming Ye
- Department of Orthopaedics Surgery, the Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Da-Peng Lu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Gui-Yang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China
| |
Collapse
|
8
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
9
|
Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. NANOSCALE 2021; 13:14166-14178. [PMID: 34477698 DOI: 10.1039/d0nr07516g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ischemic stroke is caused by a reduction in blood flow to the brain due to narrowed cerebral arteries. Thrombolytic agents have been used to induce reperfusion of occluded cerebral arteries. However, brain damage continues to progress after reperfusion and induces ischemia-reperfusion (I/R) injury. The receptor for advanced glycation end-products (RAGE) is overexpressed in hypoxic cells of the ischemic brain. In this study, an exosome linked to RAGE-binding-peptide (RBP-Exo) was developed as a hypoxia-specific carrier for nose-to-brain delivery of anti-microRNA oligonucleotide (AMO). The RBP-Exos were less than 50 nm in size and had negative surface charge. In vitro studies showed that RBP-Exos delivered AMO181a to Neuro2A cells more efficiently than unmodified exosomes (Unmod-Exos). In addition, RAGE was downregulated by RBP-Exos, suggesting that the RBP moiety of the RBP-Exos reduced the RAGE-mediated signal pathway. MicroRNA-181a (miR-181a) is one of the upregulated miRNAs in the ischemic brain and its downregulation can reduce the damage to the ischemic brain. Cholesterol-modified AMO181a (AMO181a-chol) was loaded onto the RBP-Exo by hydrophobic interaction. The AMO181a-chol-loaded RBP-Exo (RBP-Exo/AMO181a-chol) was administered intranasally to a rat middle cerebral artery occlusion (MCAO) model. MiR-181a was knocked down and Bcl-2 was upregulated by intranasal delivery of RBP-Exo/AMO181a-chol. In addition, tumor necrosis factor-α (TNF-α) expression and apoptosis were reduced by RBP-Exo/AMO181a-chol. As a result, RBP-Exo/AMO181a-chol significantly suppressed infarct size compared with the controls. In conclusion, RBP-Exo was a hypoxia-specific carrier for nose-to-brain delivery of AMO181a-chol in an ischemic stroke model. Furthermore, the combined effects of RBP and AMO181a-chol exerted neuroprotective effects in the ischemic brain.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Korea.
| | | | | |
Collapse
|
10
|
Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv 2021; 28:380-389. [PMID: 33586561 PMCID: PMC7891889 DOI: 10.1080/10717544.2021.1883158] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The development of suitable drug delivery carriers is significant in biomedical applications to improve the therapeutic efficiency. Recent progress in nanotechnological fields, paved the way for the formulation of variety of drug carriers. The brain disorders such as ischemic stroke, brain cancer, and CNS disorders were poorly treated due to the presence of blood brain barrier that hinders the passage of drugs to the brain. Hence, the formulated drugs should have the ability to cross the blood-brain barrier (BBB) for ischemic stroke treatment. In the present work, we have synthesized PLGA functionalized magnetic Fe3O4 nanoparticle (MNP) with L-carnosine peptide (LMNP) composite loaded with dexamethasone (dm@LMNP) and demonstrated as efficient drug delivery platform for simultaneous BBB crossing and treatment of ischemic stroke. The surface morphology, particles size and zeta potential of the prepared material was studied from SEM, PSD, PDI and TEM analyses. The drug loading of dexamethasone in LMNP (dm@LMNP) vesicles was found to be 95.6 ± 0.2%. The in vitro drug release kinetics displayed that prepared composited LMNP material provides controlled and sustainable releasing efficiency at pH 7.4 and 5.8 when compared to the PLGA NPs and free dexamethasone drug molecules. The cytotoxicity and the biocompatibility test results were found to be satisfactory. The L-carnosine loaded nano-formulation has been greatly leads to effective BBB crossing to access the brain tissues. These results showed that the Fe3O4 nanoparticles/PLGA polymer can be used as an effective drug carrier for the treatment of stroke and simultaneous blood brain barrier crossing.
Collapse
Affiliation(s)
- Xianfeng Lu
- Department of Pediatrics, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yaohui Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, P.R.China
| | - Lixiang Wang
- Department of Neurology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center Clinical Psychology, Qingdao, P.R. China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, P.R. China
| | - Ying Wang
- Internal Medicine-Neurology, Liaocheng People's Hospital, Liaocheng, PR China
| |
Collapse
|
11
|
Chen Y, Liu Y, Xie J, Zheng Q, Yue P, Chen L, Hu P, Yang M. Nose-to-Brain Delivery by Nanosuspensions-Based in situ Gel for Breviscapine. Int J Nanomedicine 2020; 15:10435-10451. [PMID: 33380794 PMCID: PMC7767747 DOI: 10.2147/ijn.s265659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Nose-to-brain drug delivery is an effective approach for poorly soluble drugs to bypass the blood–brain barrier. A new drug intranasal delivery system, a nanosuspension-based in situ gel, was developed and evaluated to improve the solubility and bioavailability of the drug and to prolong its retention time in the nasal cavity. Materials and Methods Breviscapine (BRE) was chosen as the model drug. BRE nanosuspensions (BRE-NS) were converted into BRE nanosuspension powders (BRE-NP). A BRE nanosuspension in situ gelling system (BRE-NG) was prepared by mixing BRE-NP and 0.5% gellan gum (m/v). First, the BRE-NP were evaluated in terms of particle size and by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Subsequently, the critical ionic concentration of the gellan gum phase transition, influence of the deacetylated gellan gum (DGG) concentration on the expansion coefficient (S%), water-holding capacity, rheological properties and in vitro release behaviour of the BRE-NG were investigated. The pharmacokinetics and brain distribution of the BRE-NG after intranasal administration were compared with those of the intravenously injected BRE-NP nanosuspensions in rats. Results The rheology results demonstrated that BRE-NG was a non-Newtonian fluid with good spreadability and bioadhesion performance. Moreover, the absolute bioavailability estimated for BRE-NG after intranasal administration was 57.12%. The drug targeting efficiency (DTE%) of BRE in the cerebrum, cerebellum and olfactory bulb was 4006, 999 and 3290, respectively. The nose-to-brain direct transport percentage (DTP%) of the cerebrum, cerebellum and olfactory bulb was 0.975, 0.950 and 0.970, respectively. Conclusion It was concluded that the in situ gel significantly increased the drug retention time at the administration site. Therefore, the nanosuspension-based in situ gel could be a convenient and effective intranasal formulation for the administration of BRE.
Collapse
Affiliation(s)
- Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jin Xie
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Liru Chen
- Beijing Hospital, Beijing 100730, People's Republic of China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| |
Collapse
|
12
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Oh J, Kim SM, Lee EH, Kim M, Lee Y, Ko SH, Jeong JH, Park CH, Lee M. Messenger RNA/polymeric carrier nanoparticles for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater Sci 2020; 8:3063-3071. [PMID: 32348398 DOI: 10.1039/d0bm00076k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischemic stroke is a cerebrovascular disease caused by narrowed cerebral arteries. Thrombolytic agents such as tissue-plasminogen activators have been used for recanalization of the blood supply into the ischemic region. However, ischemia-reperfusion damage continues to increase the infarction volume. In this study, heme oxygenase-1 (HO1)-mRNA was delivered into the brain, using a non-viral carrier. Various non-viral carriers such as polyethylenimine (25 kDa, PEI25k), lipofectamine, dexamethasone-conjugated PEI2k (Dexa-PEI2k), deoxycholic acid-conjugated PEI2k (DA-PEI2k), and R3V6 peptides were evaluated as carriers of mRNA into the brain. Gene delivery assays showed that DA-PEI2k and lipofectamine had a higher mRNA delivery efficiency than the other carriers in Neuro2A cells in vitro and a rat brain in vivo. Cytotoxicity assays showed that lipofectamine had higher toxicity than DA-PEI2k. Therefore, DA-PEI2k was used for delivery of HO1-mRNA. Unlike plasmid DNA (pDNA), mRNA is expressed in the cytosol without nuclear translocation. This suggests that mRNA may have higher gene expression than pDNA, since the nuclear location of pDNA is an inefficient step. Indeed, in in vitro transfection assays, HO1-mRNA/DA-PEI2k had higher gene expression than HO1-pDNA/DA-PEI2k without induction of a pro-inflammatory cytokine. The therapeutic effects of HO1-mRNA delivery using DA-PEI2k were evaluated in the middle cerebral artery occlusion animal model after local injection. HO1-mRNA delivery had higher gene expression than HO1-pDNA delivery 24 h after the local injection. In addition, HO1-mRNA delivery reduced the infarct size more efficiently than HO1-pDNA delivery. The results suggest that the delivery of mRNA using DA-PEI2k may be useful for gene therapy of ischemic stroke.
Collapse
Affiliation(s)
- Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakamura K, Ikeuchi T, Nara K, Rhodes CS, Zhang P, Chiba Y, Kazuno S, Miura Y, Ago T, Arikawa-Hirasawa E, Mukouyama YS, Yamada Y. Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. J Cell Biol 2019; 218:3506-3525. [PMID: 31541017 PMCID: PMC6781430 DOI: 10.1083/jcb.201807178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/10/2019] [Accepted: 07/31/2019] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke causes blood-brain barrier (BBB) breakdown due to significant damage to the integrity of BBB components. Recent studies have highlighted the importance of pericytes in the repair process of BBB functions triggered by PDGFRβ up-regulation. Here, we show that perlecan, a major heparan sulfate proteoglycan of basement membranes, aids in BBB maintenance and repair through pericyte interactions. Using a transient middle cerebral artery occlusion model, we found larger infarct volumes and more BBB leakage in conditional perlecan (Hspg2)-deficient (Hspg2 - / - -TG) mice than in control mice. Control mice showed increased numbers of pericytes in the ischemic lesion, whereas Hspg2 - / - -TG mice did not. At the mechanistic level, pericytes attached to recombinant perlecan C-terminal domain V (perlecan DV, endorepellin). Perlecan DV enhanced the PDGF-BB-induced phosphorylation of PDGFRβ, SHP-2, and FAK partially through integrin α5β1 and promoted pericyte migration. Perlecan therefore appears to regulate pericyte recruitment through the cooperative functioning of PDGFRβ and integrin α5β1 to support BBB maintenance and repair following ischemic stroke.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD .,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kazuki Nara
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD.,Tohoku University School of Medicine, Sendai, Japan
| | - Craig S Rhodes
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Yuta Chiba
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Pradhan D, Tambe V, Raval N, Gondalia P, Bhattacharya P, Kalia K, Tekade RK. Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. Colloids Surf B Biointerfaces 2019; 184:110488. [PMID: 31541894 DOI: 10.1016/j.colsurfb.2019.110488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 01/08/2023]
Abstract
Stroke is the second largest disease of mortality. The biggest hurdle in designing effective brain drug delivery systems is offered by the blood-brain barrier (BBB), which is highly impermeable to many drugs. Albumin nanoparticles (NP) have gained attention due to their multiple ligand binding sites and long circulatory half-life. Citicoline (CIT) is reported to enhance the acetylcholine secretion in the brain and also helps in membrane repair and regeneration. However, the poor BBB permeation of CIT results in lower levels of CIT in the brain. This demands the development of a suitable delivery platform to completely realize the therapeutic benefit of CIT in stroke therapy. This investigation reports the synthesis and characterization of second generation (2.0 G) dendrimer Amplified Albumin (dAA) biopolymer by FTIR, MALDI-TOF, and surface charge (mV). Further, the synthesized biopolymer has been utilized to develop a CIT nanoformulation using a commercially translatable one-pot process. Release of CIT from biopolymer was performed within an acetate buffer at pH 5 and Phosphate buffer at pH 7.4. Further, we investigated the ability of biopolymer to permeate BBB by in vitro permeability assay in bEnd.3 cells. MTT assay of CIT-dAA-NP, CIT-ANP, and 2.0 G PAMAM dendrimers was performed in bEnd.3 cells. Therapeutic efficacy of the synthesized biopolymer was determined by VEGF gene expression within an in vitro hypoxia model in PC12 cells. Thus, this investigation resulted in biopolymers that can be used to deliver any therapeutic agent by altering the permeability of the BBB. Also, cationization by dendrimer grafting is one such strategy that may be used to cationize any other negatively charged polymer, such as albumin. The synthesized biopolymer is not limited to deliver molecules to the brain, but can also be used to increase the loading of negatively-charged drug molecules, siRNA, or any other oligonucleotide.
Collapse
Affiliation(s)
- Deepak Pradhan
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Piyush Gondalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
16
|
Fukuta T, Ishii T, Asai T, Oku N. Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biol Pharm Bull 2019; 42:319-326. [PMID: 30828062 DOI: 10.1248/bpb.b18-00683] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic stroke is one of the leading causes of severe disability and death. In clinical settings, tissue plasminogen activator (t-PA) for thrombolytic therapy is the only globally approved drug for the treatment of ischemic stroke. However, the proportion of patients who receive t-PA therapy is extremely limited due to its narrow therapeutic time window (TTW) and the risk of cerebral hemorrhage. Cerebral ischemia-reperfusion (I/R) injury is also a serious problem for patients' outcomes. Hence, the development of more effective therapies has been desired to prolong the TTW of t-PA and prevent cerebral I/R injury. For delivering drugs into the brain, the blood-brain barrier (BBB) must be overcome since it limits drug penetration into the brain, leading to insufficient therapeutic efficacy. As a distinctive pathology after an ischemic stroke, it was reported that the vascular permeability of the BBB is increased around the ischemic region. We found that nano-sized liposomes can pass through the disrupted BBB and accumulate in the I/R region, and that delivery of neuroprotective agents using a liposomal drug delivery system (DDS) is effective for the treatment of cerebral I/R injury. Moreover, we have recently demonstrated that combination therapy with liposomal drugs and t-PA can suppress the deleterious effects of t-PA and extend its TTW in a rat ischemic stroke model. These findings indicate that applications of nanoparticle DDS technology could be a hopeful approach to drug development for ischemic stroke therapy. In this review, we introduce our findings on ischemic stroke treatment using liposomal DDS and recent advances from other research groups.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka.,Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| | - Takayuki Ishii
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka.,Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
17
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
18
|
Bayliss M, Trotman-Lucas M, Janus J, Kelly ME, Gibson CL. Pre-stroke surgery is not beneficial to normotensive rats undergoing sixty minutes of transient focal cerebral ischemia. PLoS One 2018; 13:e0209370. [PMID: 30592760 PMCID: PMC6310237 DOI: 10.1371/journal.pone.0209370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
Experimental stroke in rodents, via middle cerebral artery occlusion (MCAO), can be associated with a negative impact on wellbeing and mortality. In hypertensive rodents, pre-stroke craniotomy increased survival and decreased body weight loss post-MCAO. Here we determined the effect, in normotensive Sprague-Dawley rats following 60 minutes MCAO, with or without pre-surgical craniotomy, on post-stroke outcomes in terms of weight loss, neurological deficit, lesion volume and functional outcomes. There was no effect of pre-stroke craniotomy on indicators of wellbeing including survival rate (P = 0.32), body weight loss (P = 0.42) and neurological deficit (P = 0.75). We also assessed common outcome measures following experimental stroke and found no effect of pre-stroke craniotomy on lesion volume as measured by T2-weighted MRI (P = 0.846), or functional performance up to 28 days post-MCAO (staircase test, P = 0.32; adhesive sticker test, P = 0.49; cylinder test, P = 0.38). Thus, pre-stroke craniotomy did not improve animal welfare in terms of body weight loss and neurological deficit. However, it is important, given that a number of drug delivery studies utilise the craniotomy procedure, to note that there was no effect on lesion volume or functional outcome following experimental stroke.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Cerebrum/blood supply
- Cerebrum/diagnostic imaging
- Craniotomy
- Disease Models, Animal
- Humans
- Infarction, Middle Cerebral Artery/diagnostic imaging
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/mortality
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/diagnostic imaging
- Ischemic Attack, Transient/etiology
- Ischemic Attack, Transient/mortality
- Ischemic Attack, Transient/prevention & control
- Magnetic Resonance Imaging
- Male
- Rats
- Rats, Sprague-Dawley
- Survival Rate
- Treatment Outcome
- Weight Loss
Collapse
Affiliation(s)
- Michaela Bayliss
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| | - Melissa Trotman-Lucas
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Michael E. Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Claire L. Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
19
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
20
|
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2017; 150:137-149. [PMID: 29040874 DOI: 10.1016/j.biomaterials.2017.10.012] [Citation(s) in RCA: 703] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
The safe and effective delivery of drugs is a major obstacle in the treatment of ischemic stroke. Exosomes hold great promise as an endogenous drug delivery nanosystem for the treatment of cerebral ischemia given their unique properties, including low immunogenicity, innate stability, high delivery efficiency, and ability to cross the blood-brain barrier (BBB). However, exosome insufficient targeting capability limits their clinical applications. In this study, the c(RGDyK) peptide has been conjugated to the exosome surface by an easy, rapid, and bio-orthogonal chemistry. In the transient middle cerebral artery occlusion (MCAO) mice model, The engineered c(RGDyK)-conjugated exosomes (cRGD-Exo) target the lesion region of the ischemic brain after intravenous administration. Furthermore, curcumin has been loaded onto the cRGD-Exo, and administration of these exosomes has resulted in a strong suppression of the inflammatory response and cellular apoptosis in the lesion region. The results suggest a targeting delivery vehicle for ischemic brain based on exosomes and provide a strategy for the rapid and large-scale production of functionalized exosomes.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States
| | - Hui-Xin Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chun-Peng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Song Fan
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Yan-Liang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Cui Qi
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zu-Hong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
21
|
Oh J, Lee MS, Jeong JH, Lee M. Deoxycholic Acid-Conjugated Polyethylenimine for Delivery of Heme Oxygenase-1 Gene in Rat Ischemic Stroke Model. J Pharm Sci 2017; 106:3524-3532. [PMID: 28780392 DOI: 10.1016/j.xphs.2017.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
An efficient gene carrier to the brain is required for successful gene therapy of ischemic stroke. In this study, deoxycholic acid-conjugated polyethylenimine (DA-PEI) was synthesized and evaluated as a heme oxygenase-1 (HO-1) gene carrier for ischemic stroke gene therapy. Gel retardation assay and heparin competition assay showed that DA-PEI formed a stable complex with plasmid DNA. In vitro transfection assays with the luciferase gene showed that DA-PEI had higher transfection efficiency than polyethylenimine (25 kDa, PEI25k) and lipofectamine in Neuro2A cells. Furthermore, DA-PEI had less toxicity than lipofectamine. To evaluate the therapeutic effects of the pβ-HO-1/DA-PEI complex, the complex was injected locally in the brain of the transient middle cerebral artery occlusion animal model. In in vivo studies, DA-PEI was more effective than PEI25k in delivering pβ-HO-1 to the ischemic brain and achieved higher HO-1 expression. As a result, the pβ-HO-1/DA-PEI complexes more effectively reduced infarct volume and the number of apoptotic cells compared with the pβ-HO-1/PEI25k complex. The results suggest that DA-PEI will be useful for HO-1 gene therapy of ischemic stroke.
Collapse
Affiliation(s)
- Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Min Sang Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| |
Collapse
|
22
|
Pang Q, Zhang H, Chen Z, Wu Y, Bai M, Liu Y, Zhao Y, Tu F, Liu C, Chen X. Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats. Brain Res 2017; 1663:9-19. [DOI: 10.1016/j.brainres.2017.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/26/2022]
|
23
|
|
24
|
Choi M, Oh J, Rhim T, Lee M. Delivery of Hypoxia-Inducible Heme Oxygenase-1 Gene for Site-Specific Gene Therapy in the Ischemic Stroke Animal Model. Pharm Res 2016; 33:2250-8. [PMID: 27324961 DOI: 10.1007/s11095-016-1962-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To reduce side effects due to non-specific expression, the heme oxygenase-1 (HO-1) gene under control of a hypoxia-inducible erythropoietin (Epo) enhancer (pEpo-SV-HO-1) was developed for site-specific gene therapy of ischemic stroke. METHODS pEpo-SV-HO-1 was constructed by insertion of the Epo enhancer into pSV-HO-1. Dexamethasone-conjugated polyamidoamine (PAMAM-Dexa) was used as a gene carrier. In vitro transfection assays were performed in the Neuro2A cells. In vivo efficacy of pEpo-SV-HO-1 was evaluated in the transient middle cerebral artery occlusion (MCAO) model. RESULTS In vitro transfection assay with the PAMAM-Dexa/pEpo-SV-HO-1 complex showed that pEpo-SV-HO-1 had higher HO-1 gene expression than pSV-HO-1 under hypoxia. In addition, pEpo-SV-HO-1 reduced the level of apoptosis more efficiently than pSV-HO-1 in Neuro2A cells under hypoxia. For in vivo evaluation, the PAMAM-Dexa/pEpo-SV-HO-1 complex was injected into the ischemic brain of the transient MCAO model. pEpo-SV-HO-1 increased HO-1 expression and reduced the number of apoptotic cells in the ischemic brain, compared with the pSV-HO-1 injection group. As a result, the infarct volume was more efficiently decreased by pEpo-SV-HO-1 than by pSV-HO-1. CONCLUSIONS pEpo-SV-HO-1 induced HO-1 gene expression and therapeutic effect in the ischemic brain. Therefore, pEpo-SV-HO-1 may be useful for site-specific gene therapy of ischemic stroke.
Collapse
Affiliation(s)
- Manbok Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, South Korea
| | - Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, South Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, South Korea.
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, South Korea.
| |
Collapse
|
25
|
Nguyen H, Aum D, Mashkouri S, Rao G, Vega Gonzales-Portillo JD, Reyes S, Borlongan CV. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev Neurother 2016; 16:915-26. [PMID: 27152762 DOI: 10.1080/14737175.2016.1184086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In recent years, accumulating evidence has demonstrated the key role of inflammation in the progression of cerebrovascular diseases. Inflammation can persist over prolonged period of time after the initial insult providing a wider therapeutic window. Despite the acute endogenous upregulation of many growth factors after the injury, it is not sufficient to protect against inflammation and to regenerate the brain. Therapeutic approaches targeting both dampening inflammation and enhancing growth factors are likely to provide beneficial outcomes in cerebrovascular disease. AREAS COVERED In this mini review, we discuss major growth factors and their beneficial properties to combat the inflammation in cerebrovascular diseases. Emerging biotechnologies which facilitate the therapeutic effects of growth factors are also presented in an effort to provide insights into the future combination therapies incorporating both central and peripheral abrogation of inflammation. Expert commentary: Many studies discussed in this review have demonstrated the therapeutic effects of growth factors in treating cerebrovascular diseases. It is unlikely that one growth factor can be used to treat these complex diseases. Combination of growth factors and anti-inflammatory modulators may clinically improve outcomes for patients. In particular, transplantation of stem cells may be able to achieve both goals of modulating inflammation and upregulating growth factors. Large preclinical studies and multiple laboratory collaborations are needed to advance these findings from bench to bedside.
Collapse
Affiliation(s)
- Hung Nguyen
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - David Aum
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Sherwin Mashkouri
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Gautam Rao
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | | | - Stephanny Reyes
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Cesario V Borlongan
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
26
|
Neuroprotection against cerebral ischemia/reperfusion injury by intravenous administration of liposomal fasudil. Int J Pharm 2016; 506:129-37. [PMID: 27107903 DOI: 10.1016/j.ijpharm.2016.04.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/25/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
Abstract
Fasudil, a Rho-kinase inhibitor, is a promising neuroprotectant against ischemic stroke; however, its low bioavailability is an obstacle to be overcome. Our previous study revealed that the liposomal drug delivery system is a hopeful strategy to increase the therapeutic efficacy of neuroprotectants. In the present study, the usefulness of intravenously administered liposomal fasudil for cerebral ischemia/reperfusion (I/R) injury treatment was examined in transient middle cerebral artery occlusion (t-MCAO) rats. The results showed that PEGylated liposomes of approximately 100nm in diameter accumulated more extensively in the I/R region compared with those of over 200nm. Confocal images showed that fluorescence-labeled liposomal fasudil was widely distributed in the I/R region, and was not noticeably taken up by microglia, which are well-known resident macrophages in the brain, and neuronal cells. These data indicated that liposomal fasudil mainly exerted its pharmacological activity by releasing fasudil from the liposomes in the I/R region. Moreover, liposomal fasudil effectively suppressed neutrophil invasion and brain cell damage in the t-MCAO rats, resulting in amelioration of their motor function deficits. These findings demonstrated both the importance of particle size for neuroprotectant delivery and the effectiveness of liposomal fasudil for the treatment of cerebral I/R injury.
Collapse
|
27
|
Han L, Cai Q, Tian D, Kong DK, Gou X, Chen Z, Strittmatter SM, Wang Z, Sheth KN, Zhou J. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1833-1842. [PMID: 27039220 DOI: 10.1016/j.nano.2016.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. Current drug treatment for stroke remains inadequate due to the existence of the blood-brain barrier. We proposed an innovative nanotechnology-based autocatalytic targeting approach, in which the blood-brain barrier modulator lexiscan is encapsulated in nanoparticles to enhance blood-brain barrier permeability and autocatalytically augment the brain stroke-targeting delivery efficiency of chlorotoxin-anchored nanoparticles. The nanoparticles efficiently and specifically accumulated in the brain ischemic microenvironment and the targeting efficiency autocatalytically increased with subsequent administrations. When Nogo-66 receptor antagonist peptide NEP1-40, a potential therapeutic agent for ischemic stroke, was loaded, nanoparticles significantly reduced infarct volumes and enhanced survival. Our findings suggest that the autocatalytic targeting approach is a promising strategy for drug delivery to the ischemic microenvironment inside the brain. Nanoparticles developed in this study may serve as a new approach for the clinical management of stroke.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, Yale University, New Haven, CT, USA; School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiang Cai
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Derek K Kong
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchun Gou
- Department of Neurosurgery, Yale University, New Haven, CT, USA; The laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | | | - Zuoheng Wang
- Division of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Abstract
INTRODUCTION Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. AREAS COVERED In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. EXPERT OPINION To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.
Collapse
Affiliation(s)
- Taiyoun Rhim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| | - Minhyung Lee
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| |
Collapse
|
29
|
Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release 2016; 224:165-175. [DOI: 10.1016/j.jconrel.2016.01.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023]
|
30
|
Healy BF, English KR, Jagals P, Sly PD. Bisphenol A exposure pathways in early childhood: Reviewing the need for improved risk assessment models. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:544-556. [PMID: 26350983 DOI: 10.1038/jes.2015.49] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) is a plasticiser found in a number of household plastics, electronics, and food-packaging materials. Over the past 5 years, several human epidemiological studies have reported a positive association between BPA exposure and adverse health outcomes in children, including obesity, asthma, preterm birth, and neuro-behavioural disturbances. These findings are in conflict with international environmental risk assessment models, which predict daily exposure levels to BPA should not pose a risk to child health. The aim of this review is to provide an overview of the evidence for different exposure sources and potential exposure pathways of BPA in early childhood. By collating the findings from experimental models and exposure associations observed in human bio-monitoring studies, we affirm the potential for non-dietary sources to make a substantial contribution to total daily exposure in young children. Infants and toddlers have distinctive exposure sources, physiology, and metabolism of endocrine-disrupting chemicals. We recommend risk-assessment models implement new frameworks, which specifically address exposure and hazard in early childhood. This is particularly important for BPA, which is present in numerous products in the home and day-care environments, and for which animal studies report contradictory findings on its safety at environmentally relevant levels of exposure.
Collapse
Affiliation(s)
- Bridget F Healy
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Karin R English
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Paul Jagals
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, Schumacher M, Mattern C, Guennoun R. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 2015; 97:394-403. [DOI: 10.1016/j.neuropharm.2015.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
|
32
|
Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. AAPS PharmSciTech 2015; 16:223-33. [PMID: 25613561 PMCID: PMC4370956 DOI: 10.1208/s12249-015-0287-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 01/23/2023] Open
Abstract
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.
Collapse
Affiliation(s)
- K K Pulicherla
- Center for Bioseparation Technology, VIT University, Vellore, Tamilnadu, India,
| | | |
Collapse
|
33
|
Quittet MS, Touzani O, Sindji L, Cayon J, Fillesoye F, Toutain J, Divoux D, Marteau L, Lecocq M, Roussel S, Montero-Menei CN, Bernaudin M. Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat. Acta Biomater 2015; 15:77-88. [PMID: 25556361 DOI: 10.1016/j.actbio.2014.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs-VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.
Collapse
Affiliation(s)
- Marie-Sophie Quittet
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France.
| | - Omar Touzani
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Laurence Sindji
- INSERM U1066, MINT "Bio-inspired Micro and Nanomedicine", F-49933 Angers, France; LUNAM Université, F-49933 Angers, France
| | - Jérôme Cayon
- LUNAM Université, F-49933 Angers, France; Plateforme PACeM (Plateforme d'Analyse Cellulaire et Moléculaire), SFR ICAT4208, F-49933 Angers, France
| | - Fabien Fillesoye
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Jérôme Toutain
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Didier Divoux
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Léna Marteau
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Myriam Lecocq
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Simon Roussel
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Claudia N Montero-Menei
- INSERM U1066, MINT "Bio-inspired Micro and Nanomedicine", F-49933 Angers, France; LUNAM Université, F-49933 Angers, France
| | - Myriam Bernaudin
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| |
Collapse
|
34
|
Hou ST, Nilchi L, Li X, Gangaraju S, Jiang SX, Aylsworth A, Monette R, Slinn J. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci Rep 2015; 5:7890. [PMID: 25601765 PMCID: PMC4298747 DOI: 10.1038/srep07890] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022] Open
Abstract
Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.
Collapse
Affiliation(s)
- Sheng Tao Hou
- 1] Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, P.R. China, 518055 [2] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [3] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Ladan Nilchi
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [2] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Xuesheng Li
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [2] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Sandhya Gangaraju
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Susan X Jiang
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Robert Monette
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Jacqueline Slinn
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
35
|
Carenza E, Jordan O, Martínez-San Segundo P, Jiřík R, Starčuk jr Z, Borchard G, Rosell A, Roig A. Encapsulation of VEGF165into magnetic PLGA nanocapsules for potential local delivery and bioactivity in human brain endothelial cells. J Mater Chem B 2015; 3:2538-2544. [DOI: 10.1039/c4tb01895h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New drug delivery systems based on biodegradable magnetic nanocapsules for targeted delivery of pro-angiogenic proteins, potentially useful in therapeutic angiogenesis, are reported.
Collapse
Affiliation(s)
- E. Carenza
- Institut de Ciència de Materials de Barcelona
- Consejo Superior de Investigaciones Científicas (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra(Barcelona)
- Spain
| | - O. Jordan
- School of Pharmaceutical Sciences
- University of Geneva
- 1205 Genève
- Switzerland
| | - P. Martínez-San Segundo
- Neurovascular Research Laboratory and Neurovascular Unit
- Vall d'Hebron Institut de Recerca
- Universitat Autònoma de Barcelona
- 119-129 Barcelona
- Spain
| | - R. Jiřík
- Institute of Scientific Instruments
- Academy of Sciences of the Czech Republic
- 612 64 Brno
- Czech Republic
| | - Z. Starčuk jr
- Institute of Scientific Instruments
- Academy of Sciences of the Czech Republic
- 612 64 Brno
- Czech Republic
| | - G. Borchard
- School of Pharmaceutical Sciences
- University of Geneva
- 1205 Genève
- Switzerland
| | - A. Rosell
- Neurovascular Research Laboratory and Neurovascular Unit
- Vall d'Hebron Institut de Recerca
- Universitat Autònoma de Barcelona
- 119-129 Barcelona
- Spain
| | - A. Roig
- Institut de Ciència de Materials de Barcelona
- Consejo Superior de Investigaciones Científicas (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra(Barcelona)
- Spain
| |
Collapse
|
36
|
Chauhan MB, Chauhan NB. Brain Uptake of Neurotherapeutics after Intranasal versus Intraperitoneal Delivery in Mice. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2015; 2:009. [PMID: 26366437 PMCID: PMC4567259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a growing global prevalence of neurodegenerative diseases such as Alzheimer's disease and dementia. Current treatment for neurodegenerative diseases is limited due to the blood brain barrier's ability to restrict the entry of therapeutics to the brain. In that context, direct delivery of drugs from nose to brain has gained emerging interest as an important alternative to oral and parenteral routes of administration. Although there are considerable reports showing promising results after intranasal drug delivery in various disease-models and investigatory human clinical trials, there are very few studies showing a detailed pharmacokinetics with regard to the uptake and retention of intranasally delivered material(s) within specific brain regions, which are critical determining factors for dosing conditions and optimal treatment regimen. This investigation compared a time-dependent brain uptake and resident time of various radiolabeled candidate neurotherapeutics after a single bolus intranasal or intraperitoneal administration in mice. Results indicate that the brain uptake of intranasally delivered therapeutic(s) is > 5 times greater than that after intraperitoneal delivery. The peak uptake and resident time of all intranasally delivered test therapeutics for all brain regions is observed to be between 30min-12h, depending upon the distance of brain region from the site of administration, followed by gradual fading of radioactive counts by 24h post intranasal administration. Current study confirms the usefulness of intranasal administration as a non- invasive and efficient means of delivering therapeutics to the brain to treat neurodegenerative diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | - Neelima B. Chauhan
- Department of pediatrics, University of Illinois at Chicago, Children’s Hospital of the University of Illinois, Chicago, IL, USA
- Neuroscience Research, R & D, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
37
|
Lei T, Li H, Fang Z, Lin J, Wang S, Xiao L, Yang F, Liu X, Zhang J, Huang Z, Liao W. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res 2014; 9:260-7. [PMID: 25206810 PMCID: PMC4146141 DOI: 10.4103/1673-5374.128218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/24/2022] Open
Abstract
Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a preliminary experiment, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H2O2-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H2O2 treatment. In a rat model of local cerebral ischemia, we further demonstrated that Angelica sinensis polysaccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia. Our findings highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress.
Collapse
Affiliation(s)
- Tao Lei
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Haifeng Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Zhen Fang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Junbin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Shanshan Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Fan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Junjian Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zebo Huang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
38
|
Varshosaz J, Taymouri S, Pardakhty A, Asadi-Shekaari M, Babaee A. Niosomes of ascorbic acid and α-tocopherol in the cerebral ischemia-reperfusion model in male rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:816103. [PMID: 25309927 PMCID: PMC4163366 DOI: 10.1155/2014/816103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
Abstract
The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4-8(°)C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, P.O. Box 81745-359, Isfahan, Iran
| | - Somayeh Taymouri
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76175-493, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76175-493, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Abodolreza Babaee
- Anatomical Sciences Department, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, P.O. Box 76175-493, Kerman, Iran
| |
Collapse
|