1
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
2
|
Metry M, Dirda ND, Raufman JP, Polli JE, Kao JPY. Novel nitroxide-bile acid conjugates inform substrate requirements for human bile acid transporters. Eur J Pharm Sci 2023; 180:106335. [PMID: 36402308 PMCID: PMC9908032 DOI: 10.1016/j.ejps.2022.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Transport of bile acids within the enterohepatic circulation from the liver to the intestines via the gallbladder and back to the liver via the portal vein plays a critical role in bile acid regulation and homeostasis. Deficiency of fibroblast growth factor 19 (FGF19), a hormone whose role is to suppress de novo hepatic bile acid synthesis to maintain homeostatic levels, results in bile acid diarrhea (BAD). FGF19 also modulates gallbladder motility so that bile acids are concentrated in the gallbladder until postprandial contraction. To assess bile acid transport and diagnose ailments like BAD that are associated with altered bile acid synthesis and transport, we created bile acid conjugates with nitroxide radicals. Because nitroxides are paramagnetic and can promote proton relaxation, we reasoned that these paramagnetic conjugates should act as contrast agents in in vivo magnetic resonance imaging (MRI). We tested substrate capability by assessing the inhibitory potential of these novel agents against taurocholate uptake by the apical sodium dependent bile acid transporter (ASBT) and the Na+/taurocholate cotransporting polypeptide (NTCP). Surprisingly, neither the paramagnetic compounds CA-Px-1 and CA-Px-2, nor their reduced forms, CA-Px-1H and CA-Px-2H, inhibited hASBT- or hNTCP-mediated taurocholate uptake. Therefore, the new conjugates cannot serve as contrast agents for MRI in vivo. However, our findings identify important structural constraints of transportable bile acid conjugates and suggest potential modifications to overcome these limitations.
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, N623, Baltimore, MD 21201, United States
| | - Nathaniel D.A. Dirda
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Department of Medicine, Division of Gastroenterology & Hepatology, Department of Biochemistry and Molecular Biology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, N623, Baltimore, MD 21201, United States,Corresponding author: (J.E. Polli)
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
3
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
4
|
Raufman JP, Metry M, Felton J, Cheng K, Xu S, Polli J. A 19F magnetic resonance imaging-based diagnostic test for bile acid diarrhea. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:163-171. [PMID: 30387017 PMCID: PMC6408933 DOI: 10.1007/s10334-018-0713-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
In up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon-data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. 75Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders. Here, we review bile acid synthesis and transport, the pathogenesis of bile acid diarrhea, the reasons clinicians frequently overlook this disorder, including the limitations of currently available tests, and our efforts to develop a novel 19F magnetic resonance imaging (MRI)-based diagnostic approach. We created 19F-labeled bile acid analogues whose in vitro and in vivo transport mimics that of naturally occurring bile acids. Using dual 1H/19F MRI of the gallbladders of live mice fed 19F-labeled bile acid analogues, we were able to differentiate wild-type mice from strains deficient in intestinal expression of a key bile acid transporter, the apical sodium-dependent bile acid transporter (ASBT), or FGF15, the mouse homologue of FGF19. In addition to reviewing our development of 19F-labeled bile acid analogue-MRI to diagnose bile acid diarrhea, we discuss challenges to its clinical implementation. A major limitation is the paucity of clinical MRI facilities equipped with the appropriate coil and software needed to detect 19F signals.
Collapse
Affiliation(s)
- Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the VA Maryland Healthcare System, Baltimore, MD, 21201, USA.
| | - Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the VA Maryland Healthcare System, Baltimore, MD, 21201, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| |
Collapse
|
5
|
Metry M, Felton J, Cheng K, Xu S, Ai Y, Xue F, Raufman JP, Polli JE. Attenuated Accumulation of Novel Fluorine ( 19F)-Labeled Bile Acid Analogues in Gallbladders of Fibroblast Growth Factor-15 (FGF15)-Deficient Mice. Mol Pharm 2018; 15:4827-4834. [PMID: 30247920 DOI: 10.1021/acs.molpharmaceut.8b00454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jessica Felton
- Department of Surgery , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Kunrong Cheng
- VA Maryland Healthcare System, and the Department of Medicine, Division of Gastroenterology & Hepatology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Yong Ai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, and the Department of Medicine, Division of Gastroenterology & Hepatology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - James E Polli
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
6
|
Cheng K, Metry M, Felton J, Shang AC, Drachenberg CB, Xu S, Zhan M, Schumacher J, Guo GL, Polli JE, Raufman JP. Diminished gallbladder filling, increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15-deficient mice. Oncotarget 2018; 9:25572-25585. [PMID: 29876009 PMCID: PMC5986650 DOI: 10.18632/oncotarget.25385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor-19 (human FGF19; murine FGF15) suppresses bile acid synthesis. In FGF19 deficiency, diarrhea resulting from bile acid spillage into the colon mimics irritable bowel syndrome. To seek other consequences of FGF19/15 deficiency, we used Fgf15-/- and wild-type (WT) mice to assess gallbladder filling, the bile acid pool, fecal bile acid levels, and colon neoplasia. We fasted mice for six hours before assessing gallbladder size by magnetic resonance imaging (MRI). We measured bile acid levels in different compartments by enzymatic assay, and induced colon neoplasia with azoxymethane (AOM)/dextran sodium sulfate (DSS) and quantified epithelial Ki67 immunostaining and colon tumors 20 weeks later. In vivo MRI confirmed the gross finding of tubular gallbladders in FGF15-deficient compared to WT mice, but fasting gallbladder volumes overlapped. After gavage with a bile acid analogue, ex vivo MRI revealed diminished gallbladder filling in FGF15-deficient mice (P = 0.0399). In FGF15-deficient mice, the total bile acid pool was expanded 45% (P <0.05) and fecal bile acid levels were increased 2.26-fold (P <0.001). After AOM/DSS treatment, colons from FGF15-deficient mice had more epithelial cell Ki67 staining and tumors (7.33 ± 1.32 vs. 4.57 ± 0.72 tumors/mouse; P = 0.003 compared to WT mice); carcinomas were more common in FGF15-deficient mice (P = 0.01). These findings confirm FGF15, the murine homolog of FGF19, plays a key role in modulating gallbladder filling and bile acid homeostasis. In a well-characterized animal model of colon cancer, increased fecal bile acid levels in FGF15-deficient mice promoted epithelial proliferation and advanced neoplasia.
Collapse
Affiliation(s)
- Kunrong Cheng
- VA Maryland Healthcare System, Baltimore, Maryland, 21201, USA
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201, USA
| | - Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Aaron C. Shang
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Min Zhan
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201, USA
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Baltimore, Maryland, 21201, USA
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
7
|
Felton J, Cheng K, Said A, Shang AC, Xu S, Vivian D, Metry M, Polli JE, Raufman JP. Using Multi-fluorinated Bile Acids and In Vivo Magnetic Resonance Imaging to Measure Bile Acid Transport. J Vis Exp 2016. [PMID: 27929465 DOI: 10.3791/54597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Along with their traditional role as detergents that facilitate fat absorption, emerging literature indicates that bile acids are potent signaling molecules that affect multiple organs; they modulate gut motility and hormone production, and alter vascular tone, glucose metabolism, lipid metabolism, and energy utilization. Changes in fecal bile acids may alter the gut microbiome and promote colon pathology including cholerrheic diarrhea and colon cancer. Key regulators of fecal bile acid composition are the small intestinal Apical Sodium-dependent Bile Acid Transporter (ASBT) and fibroblast growth factor-19 (FGF19). Reduced expression and function of ASBT decreases intestinal bile acid up-take. Moreover, in vitro data suggest that some FDA-approved drugs inhibit ASBT function. Deficient FGF19 release increases hepatic bile acid synthesis and release into the intestines to levels that overwhelm ASBT. Either ASBT dysfunction or FGF19 deficiency increases fecal bile acids and may cause chronic diarrhea and promote colon neoplasia. Regrettably, tools to measure bile acid malabsorption and the actions of drugs on bile acid transport in vivo are limited. To understand the complex actions of bile acids, techniques are required that permit simultaneous monitoring of bile acids in the gut and metabolic tissues. This led us to conceive an innovative method to measure bile acid transport in live animals using a combination of proton (1H) and fluorine (19F) magnetic resonance imaging (MRI). Novel tracers for fluorine (19F)-based live animal MRI were created and tested, both in vitro and in vivo. Strengths of this approach include the lack of exposure to ionizing radiation and translational potential for clinical research and practice.
Collapse
Affiliation(s)
- Jessica Felton
- Department of Surgery, University of Maryland School of Medicine
| | - Kunrong Cheng
- Department of Medicine, University of Maryland School of Medicine
| | - Anan Said
- Department of Medicine, University of Maryland School of Medicine
| | - Aaron C Shang
- Department of Medicine, University of Maryland School of Medicine
| | - Su Xu
- Department of Radiology, University of Maryland School of Medicine
| | | | - Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine; VA Maryland Health Care System;
| |
Collapse
|
8
|
Vivian D, Cheng K, Khurana S, Xu S, Dawson PA, Raufman JP, Polli JE. Design and evaluation of a novel trifluorinated imaging agent for assessment of bile acid transport using fluorine magnetic resonance imaging. J Pharm Sci 2014; 103:3782-3792. [PMID: 25196788 DOI: 10.1002/jps.24131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/01/2023]
Abstract
Previously, we developed a trifluorinated bile acid, CA-lys-TFA, with the objective of noninvasively assessing bile acid transport in vivo using (19) F magnetic resonance imaging (MRI). CA-lys-TFA was successfully imaged in the mouse gallbladder, but was susceptible to deconjugation in vitro by choloylglycine hydrolase (CGH), a bacterial bile acid deconjugating enzyme found in the terminal ileum and colon. The objective of the present study was to develop a novel trifluorinated bile acid resistant to deconjugation by CGH. CA-sar-TFMA was designed, synthesized, and tested for in vitro transport properties, stability, imaging properties, and its ability to differentially accumulate in the gallbladders of normal mice, compared with mice with known impaired bile acid transport (deficient in the apical sodium-dependent bile acid transporter, ASBT). CA-sar-TFMA was a potent inhibitor and substrate of ASBT and the Na(+) /taurocholate cotransporting polypeptide. Stability was favorable in all conditions tested, including the presence of CGH. CA-sar-TFMA was successfully imaged and accumulated at 16.1-fold higher concentrations in gallbladders from wild-type mice compared with those from Asbt-deficient mice. Our results support the potential of using MRI with CA-sar-TFMA as a noninvasive method to assess bile acid transport in vivo.
Collapse
Affiliation(s)
- Diana Vivian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21230
| | - Kunrong Cheng
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Sandeep Khurana
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21230.
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21230.
| |
Collapse
|
9
|
Vivian D, Cheng K, Khurana S, Xu S, Kriel EH, Dawson PA, Raufman JP, Polli JE. In vivo performance of a novel fluorinated magnetic resonance imaging agent for functional analysis of bile acid transport. Mol Pharm 2014; 11:1575-82. [PMID: 24708306 PMCID: PMC4018118 DOI: 10.1021/mp400740c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. (19)F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable (19)F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using (19)F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI.
Collapse
Affiliation(s)
- Diana Vivian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21230, United States
| | | | | | | | | | | | | | | |
Collapse
|