1
|
Reilly RM, Georgiou CJ, Brown MK, Cai Z. Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape. EJNMMI Radiopharm Chem 2024; 9:37. [PMID: 38703297 PMCID: PMC11069497 DOI: 10.1186/s41181-024-00266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Radiation nanomedicines are nanoparticles labeled with radionuclides that emit α- or β-particles or Auger electrons for cancer treatment. We describe here our 15 years scientific journey studying locally-administered radiation nanomedicines for cancer treatment. We further present a view of the radiation nanomedicine landscape by reviewing research reported by other groups. MAIN BODY Gold nanoparticles were studied initially for radiosensitization of breast cancer to X-radiation therapy. These nanoparticles were labeled with 111In to assess their biodistribution after intratumoural vs. intravenous injection. Intravenous injection was limited by high liver and spleen uptake and low tumour uptake, while intratumoural injection provided high tumour uptake but low normal tissue uptake. Further, [111In]In-labeled gold nanoparticles modified with trastuzumab and injected iintratumourally exhibited strong tumour growth inhibition in mice with subcutaneous HER2-positive human breast cancer xenografts. In subsequent studies, strong tumour growth inhibition in mice was achieved without normal tissue toxicity in mice with human breast cancer xenografts injected intratumourally with gold nanoparticles labeled with β-particle emitting 177Lu and modified with panitumumab or trastuzumab to specifically bind EGFR or HER2, respectively. A nanoparticle depot (nanodepot) was designed to incorporate and deliver radiolabeled gold nanoparticles to tumours using brachytherapy needle insertion techniques. Treatment of mice with s.c. 4T1 murine mammary carcinoma tumours with a nanodepot incorporating [90Y]Y-labeled gold nanoparticles inserted into one tumour arrested tumour growth and caused an abscopal growth-inhibitory effect on a distant second tumour. Convection-enhanced delivery of [177Lu]Lu-AuNPs to orthotopic human glioblastoma multiforme (GBM) tumours in mice arrested tumour growth without normal tissue toxicity. Other groups have explored radiation nanomedicines for cancer treatment in preclinical animal tumour xenograft models using gold nanoparticles, liposomes, block copolymer micelles, dendrimers, carbon nanotubes, cellulose nanocrystals or iron oxide nanoparticles. These nanoparticles were labeled with radionuclides emitting Auger electrons (111In, 99mTc, 125I, 103Pd, 193mPt, 195mPt), β-particles (177Lu, 186Re, 188Re, 90Y, 198Au, 131I) or α-particles (225Ac, 213Bi, 212Pb, 211At, 223Ra). These studies employed intravenous or intratumoural injection or convection enhanced delivery. Local administration of these radiation nanomedicines was most effective and minimized normal tissue toxicity. CONCLUSIONS Radiation nanomedicines have shown great promise for treating cancer in preclinical studies. Local intratumoural administration avoids sequestration by the liver and spleen and is most effective for treating tumours, while minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | | | - Madeline K Brown
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
3
|
Wawrowicz K, Żelechowska-Matysiak K, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. Platinum nanoparticles labelled with iodine-125 for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. NANOSCALE ADVANCES 2023; 5:3293-3303. [PMID: 37325536 PMCID: PMC10262957 DOI: 10.1039/d3na00165b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Convenient therapeutic protocols against hepatocellular carcinoma (HCC) exhibit low treatment effectiveness, especially in the context of long-term effects, which is primarily related to late diagnosis and high tumor heterogeneity. Current trends in medicine concern combined therapy to achieve new powerful tools against the most aggressive diseases. When designing modern, multimodal therapeutics, it is necessary to look for alternative routes of specific drug delivery to the cell, its selective (with respect to the tumor) activity and multidirectional action, enhancing the therapeutic effect. Targeting the physiology of the tumor makes it possible to take advantage of certain characteristic properties of the tumor that differentiate it from other cells. In the present paper we designed for the first time iodine-125 labeled platinum nanoparticles for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. High selectivity achieved by targeting the tumor microenvironment of these cells was associated with effective radionuclide desorption in the presence of H2O2. The therapeutic effect was found to be correlated with cell damage at various molecular levels including DNA DSBs and was observed in a dose-dependent manner. A three-dimensional tumor spheroid revealed successful radioconjugate anticancer activity with a significant treatment response. A possible concept for clinical application after prior in vivo trials may be achieved via transarterial injection of micrometer range lipiodol emulsions with encapsulated 125I-NP. Ethiodized oil gives several advantages especially for HCC treatment; thus bearing in mind a suitable particle size for embolization, the obtained results highlight the exciting prospects for the development of PtNP-based combined therapy.
Collapse
Affiliation(s)
- Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration Wołoska 137 St. 02-507 Warsaw Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences Ciszewskiego 8 St. 02-786 Warsaw Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| |
Collapse
|
4
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Gharibkandi NA, Gierałtowska J, Wawrowicz K, Bilewicz A. Nanostructures as Radionuclide Carriers in Auger Electron Therapy. MATERIALS 2022; 15:ma15031143. [PMID: 35161087 PMCID: PMC8839301 DOI: 10.3390/ma15031143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
Abstract
The concept of nanoparticle-mediated radionuclide delivery in the cancer treatment has been widely discussed in the past decade. In particular, the use of inorganic and organic nanostructures in the development of radiopharmaceuticals enables the delivery of medically important radioisotopes for radionuclide therapy. In this review, we present the development of nanostructures for cancer therapy with Auger electron radionuclides. Following that, different types of nanoconstructs that can be used as carriers for Auger electron emitters, design principles, nanoparticle materials, and target vectors that overcame the main difficulties are described. In addition, systems in which high-Z element nanoparticles are used as radionuclide carriers, causing the emission of photoelectrons from the nanoparticle surface, are presented. Finally, future research opportunities in the field are discussed as well as issues that must be addressed before nanoparticle-based Auger electron radionuclide therapy can be transferred to clinical use.
Collapse
|
6
|
Surekha B, Kommana NS, Dubey SK, Kumar AP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces 2021; 204:111837. [DOI: 10.1016/j.colsurfb.2021.111837] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
|
7
|
Aranda-Lara L, García BEO, Isaac-Olivé K, Ferro-Flores G, Meléndez-Alafort L, Morales-Avila E. Drug Delivery Systems-Based Dendrimers and Polymer Micelles for Nuclear Diagnosis and Therapy. Macromol Biosci 2021; 21:e2000362. [PMID: 33458936 DOI: 10.1002/mabi.202000362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Indexed: 12/23/2022]
Abstract
Polymeric nanoparticles encompass micelles and dendrimers. They are used for improving or controlling the action of the loaded therapy or imaging agent, including radionuclides. Some radionuclides possess properties appropriate for simultaneous imaging and therapy of a disease and are therefore called theranostic. The diversity in core materials and surface modification, as well as radiolabeling strategies, offers multiples possibilities for preparing polymeric nanoparticles using radionuclides. The present review describes different strategies in the preparation of such nanoparticles and their applications in nuclear nanomedicine.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Blanca Eli Ocampo García
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Guillermina Ferro-Flores
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | | | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| |
Collapse
|
8
|
Alven S, Aderibigbe BA. The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. Pharmaceutics 2020; 12:E1212. [PMID: 33333778 PMCID: PMC7765183 DOI: 10.3390/pharmaceutics12121212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
9
|
Dendritic Nanotheranostic for the Delivery of Infliximab: A Potential Carrier in Rheumatoid Arthritis Therapy. Int J Mol Sci 2020; 21:ijms21239101. [PMID: 33266032 PMCID: PMC7730034 DOI: 10.3390/ijms21239101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Antibodies are macromolecules that specifically recognize their target, making them good candidates to be employed in various therapies. The possibility of attaching a drug to an immunoglobulin makes it possible to release it specifically into the affected tissue as long as it overexpresses the target. However, chemical coupling could affect the functionality (specificity and affinity) of the antibody. It has been observed that the use of intermediaries, such as dendrimers, could resolve this issue. Because carbosilane dendrimers have aroused great interest in the field of biomedicine, this report describes the synthesis of an anionic carbosilane dendrimer with a fluorochrome on its surface that then forms a conjugate with an antibody. It has been used as immunoglobulin and infliximab, whose target is TNF-α, which is a cytokine that is overexpressed in the inflamed area or even in the blood of patients with autoimmune diseases, such as rheumatoid arthritis. In addition, the integrity and functionality of the antibody has been studied to see if they have been affected after the chemical coupling process.
Collapse
|
10
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
12
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
13
|
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109:102-118. [PMID: 26705852 DOI: 10.1016/j.addr.2015.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022]
Abstract
Radioimmunotherapy (RIT) aims to selectively deliver radionuclides emitting α-particles, β-particles or Auger electrons to tumors by conjugation to monoclonal antibodies (mAbs) that recognize tumor-associated antigens/receptors. The approach has been most successful for treatment of non-Hodgkin's B-cell lymphoma but challenges have been encountered in extending these promising results to the treatment of solid malignancies. These challenges include the low potency of β-particle emitters such as 131I, 177Lu or 90Y which have been commonly conjugated to the mAbs, due to their low linear energy transfer (LET=0.1-1.0keV/μm). Furthermore, since the β-particles have a 2-10mm range, there has been dose-limiting non-specific toxicity to hematopoietic stem cells in the bone marrow (BM) due to the cross-fire effect. Conjugation of mAbs to α-particle-emitters (e.g. 225Ac, 213Bi, 212Pb or 211At) or Auger electron-emitters (e.g. 111In, 67Ga, 123I or 125I) would increase the potency of RIT due to their high LET (50-230keV/μm and 4 to 26keV/μm, respectively). In addition, α-particles have a range in tissues of 28-100μm and Auger electrons are nanometer in range which greatly reduces or eliminates the cross-fire effect compared to β-particles, potentially reducing their non-specific toxicity to the BM. In this review, we describe the results of preclinical and clinical studies of RIT of cancer using radioimmunoconjugates emitting α-particles or Auger electrons, and discuss the potential of these high LET forms of radiation to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute and Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
14
|
111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl Med Biol 2016; 43:818-826. [PMID: 27788375 DOI: 10.1016/j.nucmedbio.2016.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Gold nanoparticles (AuNP; 30nm) were modified with polyethylene glycol (PEG) chains linked to trastuzumab for binding to HER2-positive breast cancer (BC) cells and diethylenetriaminepentaacetic acid (DTPA) for complexing the Auger electron-emitter, 111In (trastuzumab-AuNP-111In). Our objective was to determine the cytotoxicity of trastuzumab-AuNP-111In on HER2-positive BC cells in vitro and evaluate its tumor growth inhibition properties and normal tissue toxicity in vivo following intratumoral (i.t.) injection in mice with s.c. HER2-overexpressing BC xenografts. METHODS Binding and internalization of trastuzumab-AuNP-111In or non-targeted AuNP-111In in SK-BR-3 (1-2×106 HER2/cell) and MDA-MB-361 (5×105 HER2/cell) human BC cells were studied. The surviving fraction (SF) of SK-BR-3 or MDA-MB-361 cells exposed to trastuzumab-AuNP-111In or AuNP-111In was determined. DNA double-strand breaks (DSBs) were assayed by probing for γ-H2AX. Tumor growth was monitored over 70days in CD1 athymic mice with s.c. MDA-MB-361 xenografts after i.t. injection of 10MBq (0.7mg; 2.6×1012 AuNP) of trastuzumab-AuNP-111In and normal tissue toxicity was assessed by monitoring body weight, complete blood cell (CBC) counts and serum alanine aminotransferase (ALT) and creatinine (Cr). RESULTS Trastuzumab-AuNP-111In was specifically bound by SK-BR-3 and MDA-MB-361 cells. Trastuzumab-AuNP-111In was more efficiently internalized than AuNP-111In and localized to a peri-nuclear region. The SF fraction of SK-BR-3 cells was reduced by 1.8-fold by treatment with 3nM (7MBq/mL) of trastuzumab-AuNP-111In. The SF of MDA-MB-361 cells was reduced by 3.7-fold at 14.4nM (33.6MBq/mL). In comparison, non-targeted AuNP-111In at these concentrations reduced the SF of SK-BR-3 or MDA-MB-361 cells by 1.2-fold (P=0.03) and 1.7-fold (P<0.0001), respectively. DNA DSBs were greater in SK-BR-3 and MDA-MB-361 cells exposed to trastuzumab-AuNP-111In compared to AuNP-111In, but unlabeled trastuzumab-AuNP did not increase DNA DSBs. Local i.t. injection of trastuzumab-AuNP-111In in CD1 athymic mice with s.c. MDA-MB-361 tumors arrested tumor growth for 70days. There was no apparent normal tissue toxicity. The radiation absorbed dose deposited in the tumor by trastuzumab-AuNP-111In was 60.5Gy, while normal organs received <0.9Gy. CONCLUSION These results are promising for further development of trastuzumab-AuNP-111In as a novel Auger electron-emitting radiation nanomedicine for local treatment of HER2-positive BC. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE A local radiation treatment for HER2-positive BC based on AuNP modified with trastuzumab and labeled with the Auger electron-emitter, 111In was developed and shown to arrest tumor growth with no normal tissue toxicity.
Collapse
|
15
|
Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep 2016; 6:23179. [PMID: 27052896 PMCID: PMC4823704 DOI: 10.1038/srep23179] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Approximately 20% of breast cancer cases are human epidermal growth factor receptor 2 (HER2)-positive. This type of breast cancer is more aggressive and tends to reoccur more often than HER2-negative breast cancer. In this study, we synthesized trastuzumab (TZ)-grafted dendrimers to improve delivery of docetaxel (DTX) to HER2-positive breast cancer cells. Bioconjugation of TZ on the surface of dendrimers was performed using a heterocrosslinker, MAL-PEG-NHS. For imaging of cancer cells, dendrimers were also conjugated to fluorescein isothiocyanate. Comparative in vitro studies revealed that these targeted dendrimers were more selective, and had higher antiproliferation activity, towards HER2-positive MDA-MB-453 human breast cancer cells than HER2-negative MDA-MB-231 human breast cancer cells. When compared with unconjugated dendrimers, TZ-conjugated dendrimers also displayed higher cellular internalization and induction of apoptosis against MDA-MB-453 cells. Binding of TZ to the dendrimer surface could help site-specific delivery of DTX and reduce systemic toxicity resulting from its lack of specificity. In addition, in vivo studies revealed that the pharmacokinetic profile of DTX was significantly improved by the conjugated nanosystem.
Collapse
|
16
|
Abstract
Breast cancer is the most common malignancy in females. Imaging plays a critical role in diagnosis, staging and surveillance, and management of disease. Fluorodeoxyglucose (FDG) PET the imaging is indicated in specific clinical setting. Sensitivity of detection depends on tumor histology and size. Whole body FDG PET can change staging and management. In recurrent disease, distant metastasis can be detected. FDG PET imaging has prognostic and predictive value. PET/MR is evolving rapidly and may play a role management, assessment of metastatic lesions, and treatment monitoring. This review discusses current PET modalities, focusing on of FDG PET imaging and novel tracers.
Collapse
Affiliation(s)
- Lizza Lebron
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Daniel Greenspan
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
18
|
Ngo Ndjock Mbong G, Lu Y, Chan C, Cai Z, Liu P, Boyle AJ, Winnik MA, Reilly RM. Trastuzumab Labeled to High Specific Activity with 111In by Site-Specific Conjugation to a Metal-Chelating Polymer Exhibits Amplified Auger Electron-Mediated Cytotoxicity on HER2-Positive Breast Cancer Cells. Mol Pharm 2015; 12:1951-60. [DOI: 10.1021/mp5007618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghislaine Ngo Ndjock Mbong
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, ON M5S 3M2, Canada
| | - Yijie Lu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Conrad Chan
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, ON M5S 3M2, Canada
| | - Zhongli Cai
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, ON M5S 3M2, Canada
| | - Peng Liu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Amanda J. Boyle
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, ON M5S 3M2, Canada
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Raymond M. Reilly
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, ON M5S 3M2, Canada
- Department
of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, ON M5T
1W7, Canada
- Toronto
General Research Institute, University Health Network, 200 Elizabeth
Street, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
19
|
Liu P, Cai Z, Kang JW, Boyle AJ, Adams J, Lu Y, Ngo Ndjock Mbong G, Sidhu S, Reilly RM, Winnik MA. Intracellular routing in breast cancer cells of streptavidin-conjugated trastuzumab Fab fragments linked to biotinylated doxorubicin-functionalized metal chelating polymers. Biomacromolecules 2014; 15:715-25. [PMID: 24506198 DOI: 10.1021/bm401483a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe the synthesis of a heterotelechelic metal-chelating polymer (Bi-MCP-Dox), a polyacrylamide with a number average degree of polymerization DPn = 50 (PDI = 1.2), with biotin (Bi) and doxorubicin (Dox) as functional chain ends and diethylenetriaminepentaacetic acid (DTPA) pendant groups as the binding sites for metal ions. We compared its behavior in cell-uptake experiments with a similar polymer (Bi-MCP) without Dox. These MCPs were complexed with trastuzumab Fab (tmFab) fragments covalently linked to streptavidin (SAv) to form tmFab-SAv-Bi-MCP-Dox and tmFab-SAv-Bi-MCP via the strong affinity between Bi and SAv. tmFab targets human epidermal growth factor receptor-2 (HER2), which is overexpressed on certain human breast cancer cells. Surface plasmon resonance (SPR) experiments with the extracellular domain (ECD) of HER2 showed that incorporation of the MCPs in these complexes had no significant effect on the association or dissociation rate with the HER2 ECD and the dissociation constants. The tmFab-complexed MCPs were subsequently labeled with (111)In (an Auger electron emitting radionuclide). Auger electrons can cause lethal DNA double strand breaks (DSBs) but only if they are emitted intracellularly and especially, in close proximity to the nucleus. To evaluate the cellular and nuclear uptake of tmFab-SAv-Bi-MCP-Dox, we incubated HER2+ SK-BR-3 human breast cancer cells with the complexes saturated with stable In(3+) and visualized their distribution by confocal fluorescence microscopy, monitoring the fluorescence of Dox. In parallel, we carried out cell fractionation studies on tmFab-SAv-Bi-MCP-Dox and on tmFab-SAv-Bi-MCP labeled with (111)In. Both radiolabeled complexes showed cell internalization and nuclear localization. We conclude that metal-chelating polymers with this composition appear to encourage internalization, nuclear uptake, and chromatin (DNA) binding of trastuzumab fragments modified with streptavidin in human breast cancer cells expressing HER2. Further study is needed to understand the impact of polymer charge on cellular uptake and distribution to intracellular compartments.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada , M5S 3H6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|