1
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
2
|
Amatya R, Hwang S, Park T, Min KA, Shin MC. In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy. Pharmaceutics 2021; 13:871. [PMID: 34204840 PMCID: PMC8231641 DOI: 10.3390/pharmaceutics13060871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/22/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) possess versatile utility in cancer theranostics, thus, they have drawn enormous interest in the cancer research field. Herein, we prepared polyethylene glycol (PEG)-conjugated and starch-coated IONPs ("PEG-starch-IONPs"), and assessed their applicability for photothermal treatment (PTT) of cancer. The prepared PEG-starch-IONPs were investigated for their physical properties by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and dynamic light scattering (DLS). The pharmacokinetic study results showed a significant extension in the plasma half-life by PEGylation, which led to a markedly increased (5.7-fold) tumor accumulation. When PEG-starch-IONPs were evaluated for their photothermal activity, notably, they displayed marked and reproducible heating effects selectively on the tumor site with laser irradiation. Lastly, efficacy studies demonstrated that PEG-starch-IONPs-based PTT may be a promising mode of cancer therapy.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Korea; (R.A.); (T.P.)
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea;
| | - Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Korea; (R.A.); (T.P.)
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea;
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Korea; (R.A.); (T.P.)
| |
Collapse
|
3
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
4
|
Fakayode OJ, Kruger CA, Songca SP, Abrahamse H, Oluwafemi OS. Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:737-744. [PMID: 30184802 DOI: 10.1016/j.msec.2018.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
Abstract
Magnetic field enhanced photodynamic therapy is an effective non-invasive technique for the eradication of cancer diseases. In this report, magnetic field enhancement of the photodynamic therapy (PDT) efficacy of a novel methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate (nano-drug) against MCF-7 breast cancer cells was evaluated. The nano-drug exhibited excellent blue and red emissions under suitable ultraviolet (380 nm) and visible (430 nm) excitations and was well taken up by the cells without any significant dark cytotoxicity after 24 h post-incubation. However, after exposure of cells to light for about 15 min, high rate of cell death was observed in a dose-dependent manner. In addition, the cells that were exposed to external magnetic field displayed higher phototoxicity than the non-exposed cells. Altogether, these results suggest that the nano-porphyrin drug system can function as a new promising magnetic-field targeting agent for theranostic photodynamic eradication of cancer diseases.
Collapse
Affiliation(s)
- O J Fakayode
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - C A Kruger
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - S P Songca
- Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa
| | - H Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - O S Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
5
|
Crespo KA, Baronetti JL, Quinteros MA, Páez PL, Paraje MG. Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity. Pharm Res 2016; 34:591-598. [PMID: 27995524 DOI: 10.1007/s11095-016-2084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The use of microorganisms for the synthesis of nanoparticles (NPs) is relatively new in basic research and technology areas. PURPOSE This work was conducted to optimized the biosynthesis of iron NPs intra- and extracellular by Escherichia coli or Pseudomonas aeruginosa and to evaluate their anticoagulant activity. STUDY DESIGN/METHODS The structures and properties of the iron NPs were investigated by Ultraviolet-visible (UV-vis) spectroscopy, Zeta potential, Dynamic light scattering (DLS), Field emission scanning electron microscope (FESEM)/ Energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). Anticoagulant activity was determined by conducting trials of Thrombin Time (TT), Activated Partial Prothrombin Time (APTT) and Prothrombin Time (PT). RESULTS UV-vis spectrum of the aqueous medium containing iron NPs showed a peak at 275 nm. The forming of iron NPs was confirmed by FESEM/ EDX, and TEM. The morphology was spherical shapes mostly with low polydispersity and the average particle diameter was 23 ± 1 nm. Iron NPs showed anticoagulant activity by the activation of extrinsic pathway. CONCLUSION The eco-friendly process of biosynthesis of iron NPs employing prokaryotic microorganisms presents a good anticoagulant activity. This could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Karina A Crespo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José L Baronetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, Córdoba, Argentina
| | - Melisa A Quinteros
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Paulina L Páez
- Unidad de Tecnología Farmacéutica (UNITEFA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - María G Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, Córdoba, Argentina.
| |
Collapse
|
6
|
Wang X, Tu M, Tian B, Yi Y, Wei Z, Wei F. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem 2016; 512:8-17. [PMID: 27523645 DOI: 10.1016/j.ab.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Miaomiao Tu
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanjie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - ZhenZhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
7
|
Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:157-168. [PMID: 27524934 PMCID: PMC4981486 DOI: 10.1016/j.mattod.2015.08.022] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of nanoparticles (NPs) for use in all facets of oncological disease detection and therapy has shown great progress over the past two decades. NPs have been tailored for use as contrast enhancement agents for imaging, drug delivery vehicles, and most recently as a therapeutic component in initiating tumor cell death in magnetic and photonic ablation therapies. Of the many possible core constituents of NPs, such as gold, silver, carbon nanotubes, fullerenes, manganese oxide, lipids, micelles, etc., iron oxide (or magnetite) based NPs have been extensively investigated due to their excellent superparamagnetic, biocompatible, and biodegradable properties. This review addresses recent applications of magnetite NPs in diagnosis, treatment, and treatment monitoring of cancer. Finally, some views will be discussed concerning the toxicity and clinical translation of iron oxide NPs and the future outlook of NP development to facilitate multiple therapies in a single formulation for cancer theranostics.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Xue P, Bao J, Wu Y, Zhang Y, Kang Y. Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy. RSC Adv 2015. [DOI: 10.1039/c5ra01616a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional magnetic nanoparticles based on Fe3O4 nanocore and Prussian blue nanoshell for combined enzyme-responsive drug release and photothermal therapy.
Collapse
Affiliation(s)
- Peng Xue
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yafeng Wu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yuejun Kang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
10
|
Zhu B, Witzel T, Jiang S, Huang SY, Rosen BR, Wald LL. Selective magnetic resonance imaging of magnetic nanoparticles by acoustically induced rotary saturation. Magn Reson Med 2014; 75:97-106. [PMID: 25537578 DOI: 10.1002/mrm.25522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/14/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE The goal of this study was to introduce a new method to selectively detect iron oxide contrast agents using an acoustic wave to perturb the spin-locked water signal in the vicinity of the magnetic particles. The acoustic drive can be modulated externally to turn the effect on and off, allowing sensitive and quantitative statistical comparison and removal of confounding image background variations. METHODS We demonstrated the effect in spin-locking experiments using piezoelectric actuators to generate vibrational displacements of iron oxide samples. We observed a resonant behavior of the signal changes with respect to the acoustic frequency where iron oxide is present. We characterized the effect as a function of actuator displacement and contrast agent concentration. RESULTS The resonant effect allowed us to generate block-design "modulation response maps" indicating the contrast agent's location, as well as positive contrast images with suppressed background signal. We found that the acoustically induced rotary saturation (AIRS) effect stayed approximately constant across acoustic frequency and behaved monotonically over actuator displacement and contrast agent concentration. CONCLUSION AIRS is a promising method capable of using acoustic vibrations to modulate the contrast from iron oxide nanoparticles and thus perform selective detection of the contrast agents, potentially enabling more accurate visualization of contrast agents in clinical and research settings.
Collapse
Affiliation(s)
- Bo Zhu
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas Witzel
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Shan Jiang
- David H Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susie Y Huang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Meridian & Acupuncture, Collaborating Center for Traditional Medicine, East-West Medical Research Institute and School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Harvard-MIT Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
15 years of ATTEMPTS: a macromolecular drug delivery system based on the CPP-mediated intracellular drug delivery and antibody targeting. J Control Release 2014; 205:58-69. [PMID: 25483423 DOI: 10.1016/j.jconrel.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Traditionally, any drug intended for combating the tumor would distribute profoundly to other organs and tissues as lack of targeting specificity, thus resulting in limited therapeutic effects toward the tumor but severe drug-induced toxic side effects. To prevail over this obstacle of drug-induced systemic toxicity, a novel approach termed "ATTEMPTS" (antibody targeted triggered electrically modified prodrug type strategy) was designed, which directly introduces both of the targeting and prodrug features onto the protein drugs. The ATTEMPTS system is composed of the antibody targeting component consisting of antibodies linked with heparin, and the cell penetrating peptide (CPP) modified drug component. The two components mentioned above self-assembled into a tight complex via the charge to charge interaction between the anionic heparin and cationic CPP. Once accumulated at the targeting site, the CPP modified drug is released from the blockage by a second triggering agent, while remaining inactive in the circulation during tumor targeting thus aborting its effect on normal tissues. We utilized the heparin-induced inhibition on the cell-penetrating activity of CPP to create the prodrug feature, and subsequently the protamine-induced reversal of heparin inhibition to resume cell transduction of the protein drug via the CPP function. Our approach is the first known system to overcome this selectivity issue, enabling CPP-mediated cellular drug delivery to be practically applicable clinically. In this review, we thoroughly discussed the historical and novel progress of the "ATTEMPTS" system.
Collapse
|
12
|
Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 2014; 193:63-73. [DOI: 10.1016/j.jconrel.2014.05.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
|
13
|
Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, Feng S, Dai Z. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjug Chem 2014; 25:1655-63. [PMID: 25109612 DOI: 10.1021/bc500279w] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper reported a core-shell nanotheranostic agent by growing Prussian blue (PB) nanoshells of 3-6 nm around superparamagnetic Fe3O4 nanocores for targeted photothermal therapy of cancer under magnetic resonance imaging (MRI) guidance. Both in vitro and in vivo experiments proved that the Fe3O4@PB core-shell nanoparticles showed significant contrast enhancement for T2-weighted MRI with the relaxivity value of 58.9 mM(-1)·s(-1). Simultaneously, the composite nanoparticles exhibited a high photothermal effect under irradiation of a near-infrared laser due to the strong absorption of PB nanoshells, which led to more than 80% death of HeLa cells with only 0.016 mg·mL(-1) of the nanoparticles with the aid of the magnetic targeting effect. Using tumor-bearing nude mice as the model, the near-infrared laser light ablated the tumor effectively in the presence of the Fe3O4@PB nanoparticles and the tumor growth inhibition was evaluated to be 87.2%. Capabilities of MRI, magnetic targeting, and photothermal therapy were thus integrated into a single agent to allow efficient MRI-guided targeted photothermal therapy. Most importantly, both PB and Fe3O4 nanoparticles were already clinically approved drugs, so the Fe3O4@PB nanoparticles as a theranostic nanomedicine would be particularly promising for clinical applications in the human body due to the reliable biosafety.
Collapse
Affiliation(s)
- Guanglei Fu
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Sun Z, Worden M, Wroczynskyj Y, Yathindranath V, van Lierop J, Hegmann T, Miller DW. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Int J Nanomedicine 2014; 9:3013-26. [PMID: 25018630 PMCID: PMC4073976 DOI: 10.2147/ijn.s62260] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE The present study examines the use of an external magnetic field in combination with the disruption of tight junctions to enhance the permeability of iron oxide nanoparticles (IONPs) across an in vitro model of the blood-brain barrier (BBB). The feasibility of such an approach, termed magnetic field enhanced convective diffusion (MFECD), along with the effect of IONP surface charge on permeability, was examined. METHODS The effect of magnetic field on the permeability of positively (aminosilane-coated [AmS]-IONPs) and negatively (N-(trimethoxysilylpropyl)ethylenediaminetriacetate [EDT]-IONPs) charged IONPs was evaluated in confluent monolayers of mouse brain endothelial cells under normal and osmotically disrupted conditions. RESULTS Neither IONP formulation was permeable across an intact cell monolayer. However, when tight junctions were disrupted using D-mannitol, flux of EDT-IONPs across the bEnd.3 monolayers was 28%, increasing to 44% when a magnetic field was present. In contrast, the permeability of AmS-IONPs after osmotic disruption was less than 5%. The cellular uptake profile of both IONPs was not altered by the presence of mannitol. CONCLUSIONS MFECD improved the permeability of EDT-IONPs through the paracellular route. The MFECD approach favors negatively charged IONPs that have low affinity for the brain endothelial cells and high colloidal stability. This suggests that MFECD may improve IONP-based drug delivery to the brain.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Worden
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Yaroslav Wroczynskyj
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Torsten Hegmann
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada ; Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA ; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada ; Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Wegscheid ML, Morshed RA, Cheng Y, Lesniak MS. The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin Drug Deliv 2014; 11:957-75. [PMID: 24766329 DOI: 10.1517/17425247.2014.912629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Malignant gliomas remain one of medicine's most daunting unsolved clinical problems. The development of new technologies is urgently needed to improve the poor prognosis of patients suffering from these brain tumors. Magnetic nanomaterials are appealing due to unique properties that allow for noninvasive brain tumor diagnostics and therapeutics in one multifunctional platform. AREAS COVERED We report on the recent advances of magnetic nanomaterials for brain tumor imaging and therapy, with an emphasis on novel approaches and clinical progress. We detail their biomedical applications including brain tumor targeting, MRI contrast enhancement, optical imaging, magnetic hyperthermia, magnetomechanical destruction, drug delivery, gene therapy, as well as tracking of cell-based and viral-based therapies. The clinical cases and obstacles encountered in the use of magnetic nanomaterials for malignant glioma are also examined. EXPERT OPINION To accelerate the effective translation of these materials to the clinic as theranostics for brain tumors, limitations such as poor intratumoral distribution, targeting efficiency and nonspecific systemic side effects must be addressed. Future innovations should focus on optimizing and combining the unique therapeutic applications of these magnetic nanomaterials as well as improving the selectivity of the system based on the molecular profiling of tumors.
Collapse
|