1
|
Alnasraui AHF, Joe IH, Al-Musawi S. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomater Sci Eng 2024; 10:6299-6313. [PMID: 39221994 DOI: 10.1021/acsbiomaterials.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic nanoparticles used for targeted drug administration present a promising approach in cancer treatment owing to its notable advantages, such as targeted and enhanced encapsulation ability and improved bio protection compared with conventional drug delivery methods. Au shell-iron core nanoparticles (Fe3O4@Au) were manufactured by a chemical process, coated with dextran to encapsulate curcumin, and functionalized for precision drug delivery using folic acid to combat liver cancer. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, vibrational spectroscopy, and magnetometry were applied to assess the synthesis of the Fe3O4@Au-DEX-CU-FA compound. The mean size, zeta potential, and polydispersity of Fe3O4@Au-DEX-CU-FA were 63.3 ± 2.33 nm, -68.3 ± 1.78 mV, and 0.041 ± 0.008, respectively. Molecular docking models were created to examine the relationship between Fe3O4@Au-CU and BCL-XL, BAK, and to identify potential binding sites. The loading efficiency and release profile tests examined the medication delivery system's ability. MTT assay was subsequently utilized to determine the optimal dosage and therapeutic efficacy of Fe3O4@Au-DEX-CU-FA on cancer SNU-449 and healthy THLE-2 cell lines. Flow cytometry demonstrated that Fe3O4@Au-DEX-CU-FA effectively induced cancer cell death. Fe3O4@Au-DEX-FA showed a regulated release profile of free curcumin at 37 °C and pH values of 7.4 and 5.4. Real-time PCR revealed increased BAK expression and decreased BCL-XL expression. Nude tumor-bearing mice were used for in vivo experiments. Fe3O4@Au-DEX-CU-FA treatment dramatically reduced the swelling size compared with free CU and control treatments. It also resulted in a longer lifespan, expanded splenocyte proliferation, increased IFN-γ levels, and decreased IL-4 levels. The regular cells showed no cytotoxic effect compared with the cancer type, confirming that Fe3O4@Au-DEX-CU-FA maintained its potent anticancer actions. The data suggests that Fe3O4@Au-DEX-CU-FA possesses a promising potential as a therapeutic agent for combating tumors.
Collapse
Affiliation(s)
- Ali Hussein F Alnasraui
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695015, India
- College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
| | - I Hubert Joe
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695015, India
| | | |
Collapse
|
2
|
Shen Q, Yu C. Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging. Front Bioeng Biotechnol 2024; 11:1323316. [PMID: 38333548 PMCID: PMC10851169 DOI: 10.3389/fbioe.2023.1323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Multimodal imaging are approaches which combines multiple imaging techniques to obtain multi-aspect information of a target through different imaging modalities, thereby greatly improve the accuracy and comprehensiveness of imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) modified with branched polyethyleneimine have revealed good biocompatibility and stability, high drug loading capacity and nucleic acid transfection efficiency. SPIONs have been developed as functionalized platforms which can be further modified to enhance their functionalities. Those further modifications facilitate the application of SPIONs in multimodal imaging. In this review, we discuss the methods, advantages, applications, and prospects of BPEI-modified SPIONs in multimodal imaging.
Collapse
Affiliation(s)
- Qiaoling Shen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Ningombam GS, Srinivasan B, Chidananda AH, Kalkura SN, Sharma Y, Singh NR. Polymer modified magnetic-luminescent nanocomposites for combined optical imaging and magnetic fluid hyperthermia in cancer therapy: analysis of Mn 2+ doping for enhanced heating effect, hemocompatibility and biocompatibility. Dalton Trans 2022; 51:8510-8524. [PMID: 35605979 DOI: 10.1039/d2dt00308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic MnxFe3-xO4 nanoparticles and polymer coated magnetic-luminescent MnxFe3-xO4@(Y,Dy/Eu)VO4 nanocomposites were prepared to study their comparative heat generation efficiency and biocompatibilities. Cubic crystalline phases were obtained for the nanoparticles and cubic-tetragonal biphasic phases were observed for the nanocomposites. The successful doping of Mn2+ was also confirmed by inductively coupled plasma optical emission spectroscopy. The compositions and the surface modification chemistry were confirmed by infrared spectroscopy. The formation of near-spherical and cubic/cuboid nanoparticles was observed from electron microscopy. Comparative analysis of induction heating efficiencies and magnetization values of the synthesized materials was performed for the samples. The samples showed an efficient heating effect under the influence of alternating magnetic field strengths - 3.05 × 106 kA m-1 s-1 and 4.58 × 106 kA m-1 s-1. A higher Mn2+ content was found to possess higher magnetization and perform better in heat generation. The nanocomposites give brilliant color emission on excitation using ultraviolet wavelengths - 300 and 315 nm. Their hydrodynamic radii and zeta potential values indicate good stability of the dispersions. Hemocompatibility studies were carried out to ascertain the effect on red blood cells. The materials were also found to exhibit excellent biocompatibility towards HeLa cell lines. This article will provide a new insight into the use of MnxFe3-xO4 based nanocomposites for magnetic fluid hyperthermia in cancer therapy.
Collapse
Affiliation(s)
| | - Baskar Srinivasan
- Crystal Growth Centre, Anna University, Chennai - 600025, India.,Department of Physics, Easwari Engineering College, Chennai - 600089, India
| | | | | | - Yogendra Sharma
- Centre for Cellular and Molecular Biology, Hyderabad - 500007, India
| | | |
Collapse
|
4
|
Shnoudeh AJ, Qadumii L, Zihlif M, Al-Ameer HJ, Salou RA, Jaber AY, Hamad I. Green Synthesis of Gold, Iron and Selenium Nanoparticles Using Phytoconstituents: Preliminary Evaluation of Antioxidant and Biocompatibility Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041334. [PMID: 35209121 PMCID: PMC8875721 DOI: 10.3390/molecules27041334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/02/2023]
Abstract
This study aimed at fabricating gold (Au), iron (Fe) and selenium (Se) nanoparticles (NPs) using various natural plant extracts from the Fertile Crescent area and evaluating their potential application as antioxidant and biocompatible agents to be used in the pharmaceutical field, especially in drug delivery. The Au-NPs were synthesized using Ephedra alata and Pistacia lentiscus extracts, whereas the Fe-NPs and Se-NPs were synthesized using peel, fruit and seed extracts of Punica granatum. The phytofabricated NPs were characterized by the UV-visible spectroscopy, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray (EDS) spectroscopy. Scanning electron microscope technique showed that the synthesized NPs surface was spherical, and the particle size analysis confirmed a particle size of 50 nm. The crystalline nature of the NPs was confirmed by the XRD analysis. All synthesized NPs were found to be biocompatible in the fibroblast and human erythroleukemic cell lines. Se-NPs showed a dose-dependent antitumor activity as evidenced from the experimental results with breast cancer (MCF-7) cells. A dose-dependent, free-radical scavenging effect of the Au-NPs and Se-NPs was observed in the DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay, with the highest effect recorded for Au-NPs.
Collapse
Affiliation(s)
- Abeer Jabra Shnoudeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan; (A.J.S.); (A.Y.J.)
| | - Lana Qadumii
- Department of Basic Sciences, Faculty of Science, Philadelphia University, Amman 19392, Jordan; (L.Q.); (R.A.S.)
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.Z.); (H.J.A.-A.)
| | - Hamzeh J. Al-Ameer
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.Z.); (H.J.A.-A.)
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, Madaba 11821, Jordan
| | - Ruba Anwar Salou
- Department of Basic Sciences, Faculty of Science, Philadelphia University, Amman 19392, Jordan; (L.Q.); (R.A.S.)
| | - Abdulmutalleb Yousef Jaber
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan; (A.J.S.); (A.Y.J.)
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan
- Correspondence: ; Tel.: +962-799-585-892
| |
Collapse
|
5
|
Liu X, Zhang W, Jing Y, Yi S, Farooq U, Shi J, Pang N, Rong N, Xu L. Non-Cavitation Targeted Microbubble-Mediated Single-Cell Sonoporation. MICROMACHINES 2022; 13:mi13010113. [PMID: 35056278 PMCID: PMC8780975 DOI: 10.3390/mi13010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
Sonoporation employs ultrasound accompanied by microbubble (MB) cavitation to induce the reversible disruption of cell membranes and has been exploited as a promising intracellular macromolecular delivery strategy. Due to the damage to cells resulting from strong cavitation, it is difficult to balance efficient delivery and high survival rates. In this paper, a traveling surface acoustic wave (TSAW) device, consisting of a TSAW chip and a polydimethylsiloxane (PDMS) channel, was designed to explore single-cell sonoporation using targeted microbubbles (TMBs) in a non-cavitation regime. A TSAW was applied to precisely manipulate the movement of the TMBs attached to MDA-MB-231 cells, leading to sonoporation at a single-cell level. The impact of input voltage and the number of TMBs on cell sonoporation was investigated. In addition, the physical mechanisms of bubble cavitation or the acoustic radiation force (ARF) for cell sonoporation were analyzed. The TMBs excited by an ARF directly propelled cell membrane deformation, leading to reversible perforation in the cell membrane. When two TMBs adhered to the cell surface and the input voltage was 350 mVpp, the cell sonoporation efficiency went up to 83%.
Collapse
Affiliation(s)
- Xiufang Liu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China; (X.L.); (N.P.)
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
| | - Wenjun Zhang
- Department of Mechanical and Electrical Engineering, Gannan University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, China;
| | - Yanshu Jing
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shasha Yi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
| | - Umar Farooq
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
| | - Jingyao Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
| | - Na Pang
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China; (X.L.); (N.P.)
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
| | - Ning Rong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Y.J.); (S.Y.); (U.F.); (J.S.)
- Correspondence: (N.R.); (L.X.); Tel.: +86-024-83683200 (L.X.)
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China; (X.L.); (N.P.)
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., Shenyang 110167, China
- Correspondence: (N.R.); (L.X.); Tel.: +86-024-83683200 (L.X.)
| |
Collapse
|
6
|
Li J, Hao Y, Pan H, Zhang Y, Cheng G, Liu B, Chang J, Wang H. CRISPR-dcas9 Optogenetic Nanosystem for the Blue Light-Mediated Treatment of Neovascular Lesions. ACS APPLIED BIO MATERIALS 2021; 4:2502-2513. [PMID: 35014368 DOI: 10.1021/acsabm.0c01465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the key regulator in neovascular lesions. The anti-VEGF injection is a major way to relieve retinal neovascularization and treat these diseases. However, current anti-VEGF therapeutics show significant drawbacks. The reason is the inability to effectively control its therapeutic effect. Therefore, how to controllably inhibit the VEGF target is a key point for preventing angiogenesis. Here, a CRISPR-dCas9 optogenetic nanosystem was designed for the precise regulation of pathologic neovascularization. This system is composed of a light-controlled regulatory component and transcription inhibition component. They work together to controllably and effectively inhibit the target gene's VEGF. The opto-CRISPR nanosystem achieved precise regulation according to individual differences, whereby the expression and interaction of gene was activated by light. The following representative model laser-induced choroid neovascularization and oxygen-induced retinopathy were taken as examples to verify the effect of this nanosystem. The results showed that the opto-CRISPR nanosystem was more efficacious in the light control group (NV area effectively reduced by 41.54%) than in the dark control group without light treatment. This strategy for the CRISPR-optogenetic gene nanosystem led to the development of approaches for treating severe eye diseases. Besides, any target gene of interest can be designed by merely replacing the guide RNA sequences in this system, which provided a method for light-controlled gene transcriptional repression.
Collapse
Affiliation(s)
- Jiahua Li
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Yafeng Hao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Baona Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
8
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
10
|
El-Sayed A, Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19200-19213. [PMID: 31529348 DOI: 10.1007/s11356-019-06459-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/06/2019] [Indexed: 05/18/2023]
Abstract
In the last decades, nanotechnology-based tools started to draw the attention of research worldwide. They offer economic, rapid, effective, and highly specific solutions for most medical issues. As a result, the international demand of nanomaterials is expanding very rapidly. It was estimated that the market of nanomaterials was about $2.6 trillion in 2015. In medicine, various applications of nanotechnology proved their potential to revolutionize medical diagnosis, immunization, treatment, and even health care products. The loading substances can be coupled with a large set of nanoparticles (NPs) by many means: chemically (conjugation), physically (encapsulation), or via adsorption. The use of the suitable loading nanosubstance depends on the application purpose. They can be used to deliver various chemicals (drugs, chemotherapeutic agents, or imaging substances), or biological substances (antigens, antibodies, RNA, or DNA) through endocytosis. They can even be used to deliver light and heat to their target cells when needed. The present review provides a brief overview about the structure and shape of available NPs and discusses their applications in the medical sciences.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
Liang C, Song J, Zhang Y, Guo Y, Deng M, Gao W, Zhang J. Facile Approach to Prepare rGO@Fe 3O 4 Microspheres for the Magnetically Targeted and NIR-responsive Chemo-photothermal Combination Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:86. [PMID: 32303922 PMCID: PMC7165235 DOI: 10.1186/s11671-020-03320-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Near-infrared (NIR)-light responsive graphene have been shown exciting effect on cancer photothermal ablation therapy. Herein, we report on the preparation of Fe3O4-decorated hollow graphene microspheres (rGO@Fe3O4) by a facile spray drying and coprecipitation method for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. The microspheres displayed very high specific surface area (~ 120.7 m2 g-1) and large pore volume (~ 1.012 cm3 g-1), demonstrating distinct advantages for a high loading capacity of DOX (~ 18.43%). NIR triggered photothermal effect of the rGO@Fe3O4 microspheres responded in an on-off manner and induced a high photothermal conversion efficiency. Moreover, The Fe3O4 on the microspheres exhibited an excellent tumor cells targeting ability. The chemo-photothermal treatment based on rGO@Fe3O4/DOX showed superior cytotoxicity towards Hela cells in vitro. Our studies indicated that rGO@Fe3O4/DOX microcapsules have great potential in combined chemo-photothermal cancer treatment.
Collapse
Affiliation(s)
- Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jiying Song
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yaping Guo
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Wei Gao
- Key Laboratory of Cancer Prevention and Therapy, Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
12
|
Mukherjee S, Liang L, Veiseh O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12020147. [PMID: 32053995 PMCID: PMC7076668 DOI: 10.3390/pharmaceutics12020147] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic nanomaterials belong to a class of highly-functionalizable tools for cancer therapy owing to their intrinsic magnetic properties and multifunctional design that provides a multimodal theranostics platform for cancer diagnosis, monitoring, and therapy. In this review article, we have provided an overview of the various applications of magnetic nanomaterials and recent advances in the development of these nanomaterials as cancer therapeutics. Moreover, the cancer targeting, potential toxicity, and degradability of these nanomaterials has been briefly addressed. Finally, the challenges for clinical translation and the future scope of magnetic nanoparticles in cancer therapy are discussed.
Collapse
|
13
|
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 2020; 102:13-34. [PMID: 31759124 DOI: 10.1016/j.actbio.2019.11.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Among various nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) have been increasingly studied for their excellent superparamagnetism, magnetic heating properties, and enhanced magnetic resonance imaging (MRI). The conjugation of SPIONs with drugs to obtain delivery nanosystems has several advantages including magnetic targeted functionalization, in vivo imaging, magnetic thermotherapy, and combined delivery of anticancer agents. To further increase the targeting efficiency of drugs through a delivery nanosystem based on SPIONs, additional targeting moieties including transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides are coated onto the surface of SPIONs. Therefore, this review summarizes the latest progresses in the conjugation of targeting molecules and drug delivery nanosystems based on SPIONs, especially focusing on their performances to develop efficient targeted drug delivery systems for tumor therapy. STATEMENT OF SIGNIFICANCE: Some magnetic nanoparticle-based nanocarriers loaded with drugs were evaluated in patients and did not produce convincing results, leading to termination of clinical development in phase II/III. An alternative strategy for drug delivery systems based on SPIONs is the conjugation of these systems with targeting segments such as transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides. These targeting moieties can be recognized by specific integrin/receptors that are overexpressed specifically on the tumor cell surface, resulting in minimizing dosage and reducing off-target effects. This review focuses on magnetic nanoparticle-based nonviral drug delivery systems with targeting moieties to deliver anticancer drugs, with an aim to provide suggestions on the development of SPIONs through discussion.
Collapse
|
14
|
Pinho SLC, Amaral JS, Wattiaux A, Duttine M, Delville MH, Geraldes CFGC. Synthesis and Characterization of Rare-Earth Orthoferrite LnFeO3
Nanoparticles for Bioimaging. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sonia L. C. Pinho
- Department of Chemistry; CICECO; University of Aveiro; 3810-193 Aveiro Portugal
- CNRS; ICMCB; Univ. Bordeaux; 33600 Pessac France
| | - João S. Amaral
- Department of Physics; CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| | | | | | | | - Carlos F. G. C. Geraldes
- Department of Life Sciences; Faculty of Science and Technology; University of Coimbra; Calçada Martim de Freitas 3000-393 Coimbra Portugal
- Coimbra Chemistry Center; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|
15
|
Effect of lipopeptide structure on gene delivery system properties: Evaluation in 2D and 3D in vitro models. Colloids Surf B Biointerfaces 2018; 167:328-336. [DOI: 10.1016/j.colsurfb.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
|
16
|
Ge L, You X, Huang J, Chen Y, Chen L, Zhu Y, Zhang Y, Liu X, Wu J, Hai Q. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Front Pharmacol 2018; 9:582. [PMID: 29946256 PMCID: PMC6005878 DOI: 10.3389/fphar.2018.00582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
For enhanced anti-cancer performance, human serum albumin fragments (HSAFs) nanoparticles (NPs) were developed as paclitaxel (PTX) carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuejian Chen
- Nanjing iPharma Technology, Co., Ltd., Nanjing, China
| | - Li Chen
- School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Ying Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiqiang Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qian Hai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 2018; 13:2767-2776. [PMID: 29780247 PMCID: PMC5951135 DOI: 10.2147/ijn.s165675] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have enormous applications in textiles, cosmetics, electronics, and pharmaceuticals. But due to their exceptional physical and chemical properties, particularly antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have many potential applications in diagnosis as well as in the treatment of various diseases. Over the past few years, nanoparticles have been extensively used to investigate their response on the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of this review was to summarize different effects of nanoparticles on the neuronal cells and try to understand the differential response of various nanoparticles. This review provides a bird's eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. Finally, this review helps the researchers to understand the different roles of nanoparticles (stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang DP, Zhang W. Biocompatible and Stable GO-Coated Fe3O4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater Sci Eng 2018; 4:2143-2154. [PMID: 33435038 DOI: 10.1021/acsbiomaterials.8b00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Mingwu Deng
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Ziyou Yu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Liu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Guangdong Zhou
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Xiansong Wang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function, Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Wenjie Zhang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| |
Collapse
|
19
|
Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 2018; 20:e3011. [PMID: 29423922 DOI: 10.1002/jgm.3011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022] Open
Abstract
The advantages and critical aspects of nanodimensional polymer-coated viral vector systems potentially applicable for gene delivery are reviewed. Various viral and nonviral vectors have been explored for gene therapy. Viral gene transfer methods, although highly efficient, are limited by their immunogenicity. Nonviral vectors have a lower transfection efficiency as a result of their inability to escape from the endosome. To overcome these drawbacks, novel nanotechnology-mediated interventions that involve the coating or modification of virus using polymers have emerged as a new paradigm in gene therapy. These alterations not only modify the tropism of the virus, but also reduce their undesirable interactions with the biological system. Also, co-encapsulation of other therapeutic agents in the polymeric coating may serve to augment the treatment efficacy. The viral particles can aid endosomal escape, as well as nuclear targeting, thereby enhancing the transfection efficiency. The integration of the desirable properties of both viral and nonviral vectors has been found beneficial for gene therapy by enhancing the transduction efficiency and minimizing the immune response. However, it is essential to ensure that these attempts should not compromise on the inherent ability of viruses to target and internalize into the cells and escape the endosomes.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Sowmiya Duraiswamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Jayandharan Giridhara Rao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| |
Collapse
|
20
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
21
|
Wu P, Chen H, Jin R, Weng T, Ho JK, You C, Zhang L, Wang X, Han C. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16:29. [PMID: 29448962 PMCID: PMC5815227 DOI: 10.1186/s12967-018-1402-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Critical tissue defects frequently result from trauma, burns, chronic wounds and/or surgery. The ideal treatment for such tissue loss is autografting, but donor sites are often limited. Tissue engineering (TE) is an inspiring alternative for tissue repair and regeneration (TRR). One of the current state-of-the-art methods for TRR is gene therapy. Non-viral gene delivery systems (nVGDS) have great potential for TE and have several advantages over viral delivery including lower immunogenicity and toxicity, better cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS for TRR, hence, there is widespread research to improve their properties. This review introduces the basic principles and key aspects of commonly-used nVGDSs. We focus on recent advances in their applications, current challenges, and future directions.
Collapse
Affiliation(s)
- Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Jon Kee Ho
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Liping Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
22
|
Biehl P, Von der Lühe M, Dutz S, Schacher FH. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers (Basel) 2018; 10:E91. [PMID: 30966126 PMCID: PMC6414908 DOI: 10.3390/polym10010091] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023] Open
Abstract
Throughout the last decades, magnetic nanoparticles (MNP) have gained tremendous interest in different fields of applications like biomedicine (e.g., magnetic resonance imaging (MRI), drug delivery, hyperthermia), but also more technical applications (e.g., catalysis, waste water treatment) have been pursued. Different surfactants and polymers are extensively used for surface coating of MNP to passivate the surface and avoid or decrease agglomeration, decrease or modulate biomolecule absorption, and in most cases increase dispersion stability. For this purpose, electrostatic or steric repulsion can be exploited and, in that regard, surface charge is the most important (hybrid) particle property. Therefore, polyelectrolytes are of great interest for nanoparticle coating, as they are able to stabilize the particles in dispersion by electrostatic repulsion due to their high charge densities. In this review article, we focus on polyzwitterions as a subclass of polyelectrolytes and their use as coating materials for MNP. In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times.
Collapse
Affiliation(s)
- Philip Biehl
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Moritz Von der Lühe
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Felix H Schacher
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
23
|
Shao H, Ding Y, Hong X, Liu Y. Ultra-facile and rapid colorimetric detection of Cu2+ with branched polyethylenimine in 100% aqueous solution. Analyst 2018; 143:409-414. [DOI: 10.1039/c7an01619k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An ultra-facile and rapid colorimetric method was explored to detect Cu2+ in 100% aqueous solution by using only BPEI.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)
- Ministry of Education
- Changchun 130024
- P. R. China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)
- Ministry of Education
- Changchun 130024
- P. R. China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)
- Ministry of Education
- Changchun 130024
- P. R. China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)
- Ministry of Education
- Changchun 130024
- P. R. China
| |
Collapse
|
24
|
Wu L, Chen L, Liu F, Qi X, Ge Y, Shen S. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf B Biointerfaces 2017; 152:440-448. [PMID: 28183070 DOI: 10.1016/j.colsurfb.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022]
Abstract
Chemotherapy has been widely used in clinic and usually causes serious side effects. To improve therapeutic effect, it is really necessary to realize local drug release and specific therapy. In this work, we demonstrate Azo (4,4-azobis (4-cyanovaleric acid))-functionalized multifunctional nanoparticles to realize near-infrared (NIR) laser-responsive drug release and combined chemo-photothermal cancer therapy. Doxorubicin (DOX) was attached to magnetic nanoparticles via a thermal-cleavable Azo linker, which could decompose while the temperature reach ∼43°C. The Azo-functioned Fe3O4 NPs also showed good capability as a contrast for T2-weighted magnetic resonance (MR) images in vivo. After intravenous injection, the Fe3O4-Azo NPs could targeted accumulate in the tumor. Once exposed to NIR irradiation, Fe3O4 nanoparticles (NPs) absorb NIR light to generate heat rapidly, resulting in the tumor specific DOX release and remarkable tumor growth inhibition effect. The Azo-functionalized Fe3O4 NPs with multifunction of in vivo imaging and combined therapy present a potential for tumor diagnosis treatment.
Collapse
Affiliation(s)
- Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Ling Chen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Fei Liu
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Xueyong Qi
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanru Ge
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, PR China.
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
25
|
Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:157-168. [PMID: 27524934 PMCID: PMC4981486 DOI: 10.1016/j.mattod.2015.08.022] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of nanoparticles (NPs) for use in all facets of oncological disease detection and therapy has shown great progress over the past two decades. NPs have been tailored for use as contrast enhancement agents for imaging, drug delivery vehicles, and most recently as a therapeutic component in initiating tumor cell death in magnetic and photonic ablation therapies. Of the many possible core constituents of NPs, such as gold, silver, carbon nanotubes, fullerenes, manganese oxide, lipids, micelles, etc., iron oxide (or magnetite) based NPs have been extensively investigated due to their excellent superparamagnetic, biocompatible, and biodegradable properties. This review addresses recent applications of magnetite NPs in diagnosis, treatment, and treatment monitoring of cancer. Finally, some views will be discussed concerning the toxicity and clinical translation of iron oxide NPs and the future outlook of NP development to facilitate multiple therapies in a single formulation for cancer theranostics.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Xue P, Bao J, Zhang L, Xu Z, Xu C, Zhang Y, Kang Y. Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells. J Mater Chem B 2016; 4:4717-4725. [DOI: 10.1039/c6tb00982d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional magnetic Prussian blue nanoparticles as a gene carrier and photothermal agent for multi-modal cancer treatment under magnetic targeting.
Collapse
Affiliation(s)
- Peng Xue
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Lei Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Zhigang Xu
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yuejun Kang
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| |
Collapse
|
27
|
Chen CS, Zhao Q, Qian S, Li HL, Guo CY, Zhang W, Yan ZP, Liu R, Wang JH. Ultrasound-guided RNA interference targeting HIF-1 alpha improves the effects of transarterial chemoembolization in rat liver tumors. Onco Targets Ther 2015; 8:3539-48. [PMID: 26664137 PMCID: PMC4669929 DOI: 10.2147/ott.s94800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim To investigate whether ultrasound-guided RNA interference (RNAi) targeting hypoxia-inducible factor-1alpha (HIF-1α) can enhance the efficacy of transarterial chemoembolization (TACE) in treating hepatocellular carcinoma. Materials and methods Rats with orthotopic hepatocellular carcinoma were randomized to four groups and treated as follows: 1) control; 2) siHIF-1α; 3) TACE; 4) siHIF-1α+TACE. Lentivirus (4×108 transfection units) with or without small interfering RNA (siRNA) expression in 0.6 mL transduction reagent was injected into tumors using a standard 1 mL syringe under ultrasonic guidance. In the siHIF-1α+TACE and siHIF-1α groups, rats received siRNA-expressing lentivirus; the rats in the TACE and control groups received lentivirus without siRNA. TACE was performed by placing a microcatheter into the gastroduodenal artery. Results The median survival time, body weight, and tumor volume of the siHIF-1α+TACE group were better than those of the TACE, siHIF-1α, and control groups. A comparative analysis of the different treatment groups demonstrated that HIF-1α RNAi could downregulate the levels of HIF-1α and VEGF, inhibit tumor angiogenesis, and lessen metastases; all of these effects were enhanced by TACE. Conclusion HIF-1α RNAi, which was administered in vivo in liver tumors under ultrasound guidance, improved the efficacy of TACE in treating hepatocellular carcinoma in an animal model.
Collapse
Affiliation(s)
- Cheng-Shi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China ; Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qing Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Sheng Qian
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hai-Liang Li
- Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen-Yang Guo
- Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian-Hua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Hurley KR, Ring HL, Kang H, Klein ND, Haynes CL. Characterization of Magnetic Nanoparticles in Biological Matrices. Anal Chem 2015; 87:11611-9. [DOI: 10.1021/acs.analchem.5b02229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Katie R. Hurley
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Center
for Magnetic Resonance Research, University of Minnesota, 2021 Sixth
Street SE, Minneapolis, Minnesota 55455, United States
| | - Hyunho Kang
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nathan D. Klein
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Jiang L, Zhao X, Zheng C, Li F, Maclean JL, Chen F, Swami A, Qian H, Zhu J, Ge L. The quantitative detection of the uptake and intracellular fate of albumin nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra01683e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little has been investigated about the intracellular fate of organic nanoparticles (NPs), which is important for the safety and drug delivery efficiency of NPs. In this work, the intracellular disassociation and hydrolysis of albumin NPs were detected based on FRET.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Xin Zhao
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
| | - Chunli Zheng
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Fang Li
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
- School of Pharmacy
| | | | - Fangcheng Chen
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Archana Swami
- Department of Anesthesia
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
- USA
| | - Hai Qian
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Jiabi Zhu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Liang Ge
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| |
Collapse
|
30
|
Yu H, Li S, Feng L, Liu Y, Qi X, Wei W, Li J, Dong W. Diglycidyl Esters Cross-Linked with Low Molecular Weight Polyethyleneimine for Magnetofection. Aust J Chem 2015. [DOI: 10.1071/ch14731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Magnetic polyethyleneimine (PEI) complexes have demonstrated to be simple and efficient vectors for enhancing gene transfection. However, the high cytotoxicity of PEI restricts its further application in vivo. In this study, we synthesized several low cytotoxicity biodegradable cationic polymers derived from PEI (Mw 600) linked with diglycidyl tartrate (DT-PEI) or its analogues (diglycidyl succinate (DS-PEI) and diglycidyl malate (DM-PEI); D-PEIs for all 3 polymers). Moreover, a type of biocompatible magnetic nanoparticles (MNPs) with negative charges was prepared to assemble with D-PEIs/DNA complexes via electrostatic interactions. The magnetic ternary complexes have appropriate sizes of 120–150 nm and zeta potential values of ~20–25 mV. The transfection ability and cell viability of D-PEIs increased as the amount of hydroxyl groups increased in the repeat unit, which indicated that increasing the hydroxyl number in the backbone of D-PEIs can enhance gene expression and decrease cytotoxicity in A549 cells. Magnetofection of DT-PEI showed similar transfection efficiency with 30 min incubation; in contrast, the standard incubation time was 4 h. All three magnetic complexes displayed lower cytotoxicity when compared with those of PEI complexes in COS-7 and A549. These results indicated that these series of magnetic PEI derivatives complexes could be potential nanocarriers for gene delivery.
Collapse
|
31
|
Goglio G, Kaur G, Pinho SLC, Penin N, Blandino A, Geraldes CFGC, Garcia A, Delville MH. Glycine-Nitrate Process for the Elaboration of Eu3+-Doped Gd2O3Bimodal Nanoparticles for Biomedical Applications. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Yuan C, An Y, Zhang J, Li H, Zhang H, Wang L, Zhang D. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma. NANOTECHNOLOGY 2014; 25:345101. [PMID: 25091504 DOI: 10.1088/0957-4484/25/34/345101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.
Collapse
Affiliation(s)
- Chenyan Yuan
- School of Medicine, Southeast University, Nanjing, People's Republic of China. Affiliated Zhong Da Hospital of Southeast University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|