1
|
Moran MM, Wilson BM, Ross RD, Virdi AS, Sumner DR. Arthrotomy-based preclinical models of particle-induced osteolysis: A systematic review. J Orthop Res 2017; 35:2595-2605. [PMID: 28548682 PMCID: PMC5702596 DOI: 10.1002/jor.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
Abstract
We completed a systematic literature review of in vivo animal models that use arthrotomy-based methods to study particle-induced peri-implant osteolysis. The purpose of the review was to characterize the models developed to date, to determine the questions addressed, to assess scientific rigor and transparency, and to identify gaps in knowledge. We probed three literature databases (Medline, Embase, and Scopus) and found 77 manuscripts that fit the search parameters. In the most recent 10 years, researchers mainly used rat and mouse models, whereas in the previous 20 years, large animal, canine, and rabbit models were more common. The studies have demonstrated several pathophysiology pathways, including macrophage migration, particle phagocytosis, increased local production of cytokines and lysosomal enzymes, elevated bone resorption, and suppressed bone formation. The effect of variation in particle characteristics and concentration received limited attention with somewhat mixed findings. Particle contamination by endotoxin was shown to exacerbate peri-implant osteolysis. The possibility of early diagnosis was demonstrated through imaging and biomarker approaches. Several studies showed that both local and systemic delivery of bisphosphonates inhibits the development of particle-induced osteolysis. Other methods of inhibiting osteolysis include the use of anabolic agents and altering the implant design. Few studies examined non-surgical rescue of loosened implants, with conflicting results with alendronate. We found that the manuscripts often lacked the methodological detail now advocated by the ARRIVE guidelines, suggesting that improvement in reporting would be useful to maximize rigor and transparency. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2595-2605, 2017.
Collapse
Affiliation(s)
- Meghan M. Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | | - Ryan D. Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Amarjit S. Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | |
Collapse
|
2
|
Wei X, Li F, Zhao G, Chhonker YS, Averill C, Galdamez J, Purdue PE, Wang X, Fehringer EV, Garvin KL, Goldring SR, Alnouti Y, Wang D. Pharmacokinetic and Biodistribution Studies of HPMA Copolymer Conjugates in an Aseptic Implant Loosening Mouse Model. Mol Pharm 2017; 14:1418-1428. [PMID: 28343392 DOI: 10.1021/acs.molpharmaceut.7b00045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers were previously found to represent a versatile delivery platform for the early detection and intervention of orthopedic implant loosening. In this article, we evaluated the impact of different structural parameters of the HPMA copolymeric system (e.g., molecular weight (MW), drug content) to its pharmacokinetics and biodistribution (PK/BD) profile. Using 125I, Alexa Fluor 488, and IRDye 800 CW-labeled HPMA copolymer-dexamethasone (P-Dex) conjugates with different MW and dexamethasone (Dex) contents, we found the MW to be the predominant impact factor on the PK/BD profiles of P-Dex, with Dex content as a secondary impact factor. In gamma counter-based PK/BD studies, increased MW of P-Dex reduced elimination, leading to lower clearance, longer half-life, and higher systemic exposure (AUC and MRT). In the semiquantitative live animal optical imaging evaluation, the distribution of P-Dex to the peri-implant inflammatory lesion increased when MW was increased. This result was further confirmed by FACS analyses of cells isolated from peri-implant regions after systemic administration of Alexa Fluor 488-labeled P-Dex. Since the in vitro cell culture study suggested that the internalization of P-Dex by macrophages is generally independent of P-Dex's MW and Dex content, the impact of the MW and Dex content on its PK/BD profile was most likely exerted at physiological and pathophysiological levels rather than at the cellular level. In both gamma counter-based PK/BD analyses and semiquantitative optical imaging analyses, P-Dex with 6 wt % Dex content showed fast clearance. Dynamic light scattering analyses unexpectedly revealed significant molecular aggregation of P-Dex at this Dex content level. The underlining mechanisms of the aggregation and fast in vivo clearance of the P-Dex warrant further investigation.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Fei Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Gang Zhao
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Yashpal Singh Chhonker
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Christine Averill
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Josselyn Galdamez
- Hospital for Special Surgery , New York, New York 10021, United States
| | - P Edward Purdue
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Xiaoyan Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Edward V Fehringer
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Kevin L Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Steven R Goldring
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States.,Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res 2016; 4:16014. [PMID: 27468360 PMCID: PMC4941197 DOI: 10.1038/boneres.2016.14] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the surface of prosthetic joints induces an immune response that favors bone catabolism, resulting in loosening of prostheses with eventual failure or fracture. The immune response initiated is innate in that it is nonspecific and self-propagating, with monocytic cells and osteoclasts being the main effectors. To date, detecting disease early enough to implement effective intervention without unwanted systemic side effects has been a major barrier. These barriers can be overcome using newer in vivo imaging techniques and modules linked with fluorescence and/or chemotherapies. We discuss the pathogenesis of osteolysis, and provide discussion of the challenges with imaging and therapeutics. We describe a positron emission tomography imaging cinnamoyl-Phe-(D)-Leu-Phe-(D)-Leu-Phe-Lys module, specific to macrophages, which holds promise in early detection of disease and localization of treatment. Further research and increased collaboration among therapeutic and three-dimensional imaging researchers are essential in realizing a solution to clinical osteolysis in TJA.
Collapse
|