1
|
Schaiquevich P, Francis JH, Cancela MB, Carcaboso AM, Chantada GL, Abramson DH. Treatment of Retinoblastoma: What Is the Latest and What Is the Future. Front Oncol 2022; 12:822330. [PMID: 35433448 PMCID: PMC9010858 DOI: 10.3389/fonc.2022.822330] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
The management of retinoblastoma, the most common intraocular malignancy in children, has changed drastically over the last decade. Landmark developments in local drug delivery, namely, safer techniques for intravitreal chemotherapy injection and ophthalmic artery chemosurgery, have resulted in eye globe salvages that were not previously attainable using systemic chemotherapy or external beam irradiation. Novel drugs, oncolytic viruses, and immunotherapy are promising approaches in the treatment of intraocular retinoblastoma. Importantly, emerging studies of the pattern of tumor dissemination and local drug delivery may provide the first steps toward new treatments for metastatic disease. Here, we review recent advances in retinoblastoma treatment, especially with regard to local drug delivery, that have enabled successful conservative management of intraocular retinoblastoma. We also review emerging data from preclinical and clinical studies on innovative approaches that promise to lead to further improvement in outcomes, namely, the mechanisms and potential uses of new and repurposed drugs and non-chemotherapy treatments, and discuss future directions for therapeutic development.
Collapse
Affiliation(s)
- Paula Schaiquevich
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina,National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| | - Jasmine H. Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Department of Ophthalmology, Weill/Cornell Medical School, New York, NY, United States
| | - María Belén Cancela
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina,National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| | - Angel Montero Carcaboso
- Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Guillermo L. Chantada
- National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina,Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain,Institute for Translational Research, Universidad Austral, Buenos Aires, Argentina,Research Department, Fundacion Perez-Scremini, Montevideo, Uruguay
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Department of Ophthalmology, Weill/Cornell Medical School, New York, NY, United States,*Correspondence: David H. Abramson,
| |
Collapse
|
2
|
Yang W, Jiang XX, Zhao XY, Mao PA. Treatment of RB-deficient retinoblastoma with Aurora-A kinase inhibitor. Kaohsiung J Med Sci 2022; 38:244-252. [PMID: 34741392 DOI: 10.1002/kjm2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Retinoblastoma, also known as ocular cancer, usually affects children under the age of five. The standard of care for managing early-stage retinoblastoma is a combination of vincristine, carboplatin, and etoposide. However, this combination-based modality has limited applications owing to its side and late effects. Moreover, in advanced tumor stages, nearly 50% of patients would suffer a partial or full loss of vision. Therefore, therapies that preserve vision and reduce side effects are urgently required. Here, we focused mainly on the common loss-of-function (LOF) mutation of retinoblastoma gene 1 (RB1) in advanced retinoblastoma and investigated the synthetic lethality between RB1-LOF and Aurora kinase inhibition. We showed that Aurora kinase A inhibition could lead to cell mitotic abnormality and apoptosis, and demonstrated in vivo efficacy in a mouse model xenografted with RB1-deficient retinoblastoma. Our findings provide a promising druggable molecular target and potential clinical strategy for tackling retinoblastoma disease.
Collapse
Affiliation(s)
- Wen Yang
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xing-Xiu Jiang
- Department of Ophthalmology, Changzhou Jintan First People's Hospital, Changzhou, China
| | - Xiao-Yan Zhao
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ping-An Mao
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Kawatkar SP, Barlaam B, Kemmitt P, Simpson I, Watson D, Wang P, Lamont S, Su Q, Boiko S, Ikeda T, Patel J, Pike A, Pollard H, Read J, Sarkar U, Wang H, Wen Q, Yan Z, Dowling JE, Dry H, Edmondson SD. Identification of a novel series of azabenzimidazole-derived inhibitors of spleen tyrosine kinase. Bioorg Med Chem Lett 2020; 30:127393. [PMID: 32721854 DOI: 10.1016/j.bmcl.2020.127393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 11/29/2022]
Abstract
Spleen Tyrosine Kinase (SYK) is a well-studied enzyme with therapeutic applications in oncology and autoimmune diseases. We identified an azabenzimidazole (ABI) series of SYK inhibitors by mining activity data of 86,000 compounds from legacy biochemical assays with SYK and other homologous kinases as target enzymes. A structure-based design and hybridization approach was then used to improve the potency and kinase selectivity of the hits. Lead compound 23 from this novel ABI series has a SYK IC50 = 0.21 nM in a biochemical assay and inhibits growth of SUDHL-4 cells at a GI50 = 210 nM.
Collapse
Affiliation(s)
| | | | - Paul Kemmitt
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Iain Simpson
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - David Watson
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Peng Wang
- Pharmaron Beijing Co., Ltd., Taihe Road BDA, Beijing, 100176, PR China
| | - Scott Lamont
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Qibin Su
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | - Scott Boiko
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | - Timothy Ikeda
- R&D Oncology, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Joe Patel
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | - Andy Pike
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Hannah Pollard
- R&D Oncology, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Jon Read
- R&D Oncology, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Ujjal Sarkar
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | - Haiyun Wang
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | - Quanshan Wen
- Pharmaron Beijing Co., Ltd., Taihe Road BDA, Beijing, 100176, PR China
| | - Zhiyuan Yan
- Pharmaron Beijing Co., Ltd., Taihe Road BDA, Beijing, 100176, PR China
| | | | - Hannah Dry
- R&D Oncology, AstraZeneca, Boston, MA, United States
| | | |
Collapse
|
5
|
Tsamesidis I, Reybier K, Marchetti G, Pau MC, Virdis P, Fozza C, Nepveu F, Low PS, Turrini FM, Pantaleo A. Syk Kinase Inhibitors Synergize with Artemisinins by Enhancing Oxidative Stress in Plasmodium falciparum-Parasitized Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9080753. [PMID: 32824055 PMCID: PMC7464437 DOI: 10.3390/antiox9080753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Karine Reybier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Giuseppe Marchetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Maria Carmina Pau
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Patrizia Virdis
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Claudio Fozza
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Francoise Nepveu
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Philip S. Low
- Purdue Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- Correspondence:
| |
Collapse
|
6
|
Schmitt M, Hippeläinen E, Raviña M, Arango-Gonzalez B, Antopolsky M, Vellonen KS, Airaksinen AJ, Urtti A. Intravitreal Pharmacokinetics in Mice: SPECT/CT Imaging and Scaling to Rabbits and Humans. Mol Pharm 2019; 16:4399-4404. [DOI: 10.1021/acs.molpharmaceut.9b00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mechthild Schmitt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eero Hippeläinen
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- HUS Medical imaging Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Manuela Raviña
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Maxim Antopolsky
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Anu J. Airaksinen
- Department of Chemistry—Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, Peterhoff, Russian Federation
| |
Collapse
|
7
|
Rajasekaran S, Nagarajha Selvan LD, Dotts K, Kumar R, Rishi P, Khetan V, Bisht M, Sivaraman K, Krishnakumar S, Sahoo D, Campbell MJ, Elchuri SV, Miles WO. Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors. Front Oncol 2019; 9:221. [PMID: 31058073 PMCID: PMC6477087 DOI: 10.3389/fonc.2019.00221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare pediatric tumor of the retina, caused by the homozygous loss of the Retinoblastoma 1 (RB1) tumor suppressor gene. Previous microarray studies have identified changes in the expression profiles of coding genes; however, our understanding of how non-coding genes change in this tumor is absent. This is an important area of research, as in many adult malignancies, non-coding genes including LNC-RNAs are used as biomarkers to predict outcome and/or relapse. To establish a complete and in-depth RNA profile, of both coding and non-coding genes, in Retinoblastoma tumors, we conducted RNA-seq from a cohort of tumors and normal retina controls. This analysis identified widespread transcriptional changes in the levels of both coding and non-coding genes. Unexpectedly, we also found rare RNA fusion products resulting from genomic alterations, specific to Retinoblastoma tumor samples. We then determined whether these gene expression changes, of both coding and non-coding genes, were also found in a completely independent Retinoblastoma cohort. Using our dataset, we then profiled the potential effects of deregulated LNC-RNAs on the expression of neighboring genes, the entire genome, and on mRNAs that contain a putative area of homology. This analysis showed that most deregulated LNC-RNAs do not act locally to change the transcriptional environment, but potentially function to modulate genes at distant sites. From this analysis, we selected a strongly down-regulated LNC-RNA in Retinoblastoma, DRAIC, and found that restoring DRAIC RNA levels significantly slowed the growth of the Y79 Retinoblastoma cell line. Collectively, our work has generated the first non-coding RNA profile of Retinoblastoma tumors and has found that these tumors show widespread transcriptional deregulation.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | - Kathleen Dotts
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Ranjith Kumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Madhoolika Bisht
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | | | - Debashis Sahoo
- Department of Pediatrics and Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Wayne O Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Comprehensive characterization of RB1 mutant and MYCN amplified retinoblastoma cell lines. Exp Cell Res 2018; 375:92-99. [PMID: 30584916 DOI: 10.1016/j.yexcr.2018.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
In retinoblastoma research tumor-derived cell lines remain an important model to investigate tumorigenesis and new therapy options, due to limited tumor material and lack of adequate animal models. A panel of 10 retinoblastoma cell lines was characterized with respect to mutation, methylation and expression of RB1 and MYCN. These established retinoblastoma cell lines represent the most frequent types of RB1 inactivation and together with the MYCN amplification status, three classes can be distinguished: RB1mut/MYCNnonA, RB1mut/MYCNA and RB1wt/MYCNA. MYCN amplification was identified in five cell lines, whereby two of them, RB522 and RB3823, harbor no aberration in RB1. Targeted sequencing of 160 genes often mutated in cancer identified only few variants in tumor-associated genes other than in RB1. None of these variants was recurrent. mRNA expression analyses of retinal markers, cell cycle regulators and members of the TP53 signaling pathway revealed a high variability between cell lines but no class-specific differences. The here presented thorough validation of retinoblastoma cell lines, including microsatellite analysis for cell line authentication, provides the basis for further in vitro studies on retinoblastoma.
Collapse
|
9
|
Elchuri SV, Rajasekaran S, Miles WO. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 2018; 9:170. [PMID: 29868118 PMCID: PMC5966869 DOI: 10.3389/fgene.2018.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1). Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area's to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.
Collapse
Affiliation(s)
- Sailaja V. Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Swetha Rajasekaran
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol 2017; 10:145. [PMID: 28754125 PMCID: PMC5534090 DOI: 10.1186/s13045-017-0512-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is a cytosolic non-receptor protein tyrosine kinase (PTK) and is mainly expressed in hematopoietic cells. Syk was recognized as a critical element in the B-cell receptor signaling pathway. Syk is also a key component in signal transduction from other immune receptors like Fc receptors and adhesion receptors. Several oral Syk inhibitors including fostamatinib (R788), entospletinib (GS-9973), cerdulatinib (PRT062070), and TAK-659 are being assessed in clinical trials. The second generation compound, entospletinib, showed promising results in clinical trials against B-cell malignancies, mainly chronic lymphoid leukemia. Syk inhibitors are being evaluated in combination regimens in multiple malignancies.
Collapse
Affiliation(s)
- Delong Liu
- Department of Oncology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Aleksandra Mamorska-Dyga
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, 10595, USA
| |
Collapse
|
11
|
Abstract
In this review, Dyson summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients? The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene to be molecularly defined. RB1 mutations occur in almost all familial and sporadic forms of retinoblastoma, and this gene is mutated at variable frequencies in a variety of other human cancers. Because of its early discovery, the recessive nature of RB1 mutations, and its frequency of inactivation, RB1 is often described as a prototype for the class of tumor suppressor genes. Its gene product (pRB) regulates transcription and is a negative regulator of cell proliferation. Although these general features are well established, a precise description of pRB's mechanism of action has remained elusive. Indeed, in many regards, pRB remains an enigma. This review summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients?
Collapse
|
12
|
Yuan S, Friedman DL, Daniels AB. Alternative Chemotherapeutic Agents for the Treatment of Retinoblastoma Using the Intra-Arterial and Intravitreal Routes: A Path Forward Toward Drug Discovery. Int Ophthalmol Clin 2017; 57:129-141. [PMID: 27898619 DOI: 10.1097/iio.0000000000000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
13
|
Taskar P, Tatke A, Majumdar S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin Drug Deliv 2016; 14:49-63. [PMID: 27441817 DOI: 10.1080/17425247.2016.1208649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ocular drug delivery is presented with many challenges, taking into account the distinctive structure of the eye. The prodrug approach has been, and is being, employed to overcome such barriers for some drug molecules, utilizing a chemical modification approach rather than a formulation-based approach. A prodrug strategy involves modification of the active moiety into various derivatives in a fashion that imparts some advantage, such as membrane permeability, site specificity, transporter targeting and improved aqueous solubility, over the parent compound. Areas covered: The following review is a comprehensive summary of various novel methodologies and strategies reported over the past few years in the area of ocular drug delivery. Some of the strategies discussed involve polymer and lipid conjugation with the drug moiety to impart hydrophilicity or lipophilicity, or to target nutrient transporters by conjugation with transporter-specific moieties and retrometabolic drug design. Expert opinion: The application of prodrug strategies provides an option for enhancing drug penetration into the ocular tissues, and overall ocular bioavailability, with minimum disruption of the ocular diffusion barriers. Although success of the prodrug strategy is contingent on various factors, such as the chemical structure of the parent molecule, aqueous solubility and solution stability, capacity of targeted transporters and bioreversion characteristics, this approach has been successfully utilized, commercially and therapeutically, in several cases.
Collapse
Affiliation(s)
- Pranjal Taskar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Akshaya Tatke
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| |
Collapse
|
14
|
Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL. Retinoblastoma. Nat Rev Dis Primers 2015; 1:15021. [PMID: 27189421 PMCID: PMC5744255 DOI: 10.1038/nrdp.2015.21] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoblastoma is a rare cancer of the infant retina that is diagnosed in approximately 8,000 children each year worldwide. It forms when both retinoblastoma gene (RB1) alleles are mutated in a susceptible retinal cell, probably a cone photoreceptor precursor. Loss of the tumour-suppressive functions of the retinoblastoma protein (pRB) leads to uncontrolled cell division and recurrent genomic changes during tumour progression. Although pRB is expressed in almost all tissues, cone precursors have biochemical and molecular features that may sensitize them to RB1 loss and enable tumorigenesis. Patient survival is >95% in high-income countries but <30% globally. However, outcomes are improving owing to increased disease awareness for earlier diagnosis, application of new guidelines and sharing of expertise. Intra-arterial and intravitreal chemotherapy have emerged as promising methods to salvage eyes that with conventional treatment might have been lost. Ongoing international collaborations will replace the multiple different classifications of eye involvement with standardized definitions to consistently assess the eligibility, efficacy and safety of treatment options. Life-long follow-up is warranted, as survivors of heritable retinoblastoma are at risk for developing second cancers. Defining the molecular consequences of RB1 loss in diverse tissues may open new avenues for treatment and prevention of retinoblastoma, as well as second cancers, in patients with germline RB1 mutations.
Collapse
Affiliation(s)
- Helen Dimaras
- Department of Ophthalmology & Vision Sciences, The Hospital for Sick Children & University of Toronto, Toronto, Canada
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Cobrinik
- The Vision Center, Children’s Hospital Los Angeles & USC Eye Institute, University of Southern California, Los Angeles, CA USA
| | | | - Junyang Zhao
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medial University, Beijing, China
| | - Francis L. Munier
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - David H. Abramson
- Department of Ophthalmology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Carol L. Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, USA
| | | | - Festus Njuguna
- Department of Department of Child Health and Paediatrics, Moi University, Eldoret, Kenya
| | - Brenda L. Gallie
- Department of Ophthalmology & Vision Sciences, The Hospital for Sick Children & University of Toronto, 555 University Ave, Toronto, Ontario M5G1X8, Canada
| |
Collapse
|
15
|
Brennan RC, Pritchard EM, Guy RK, Dyer MA, Wilson MW. Current and emerging therapy for improving outcomes in patients with intraocular retinoblastoma. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1075878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Abstract
In recent years, there have been dramatic changes in the management of intraocular retinoblastoma. Intraocular retinoblastoma is a highly curable malignancy and current treatments are aimed to preserve vision while reducing the late effects such as treatment-induced secondary malignancies. The advent of intra-arterial chemotherapy changed the treatment paradigm from systemic treatment with chemotherapy to local treatment, and new questions emerged. While intra-arterial chemotherapy achieved encouraging results, only experience from major referral centers is reported, so its indications, advantages and risks are still to be elucidated. Many factors should be considered when choosing the appropriate conservative therapy. When the disease has extended outside the eye, the chances of cure are significantly lower and treatment should be tailored by the presence of pathology risk factors such as invasion of the choroid, the optic nerve, and the sclera. Adjuvant therapy is decided upon this information. Children with overt extraocular disease are treated with higher dose neoadjuvant therapy followed by delayed enucleation and adjuvant therapy.
Collapse
|