1
|
Kumar A, Ahmed B, Kaur IP, Saha L. Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis. Int J Biol Macromol 2024; 277:133984. [PMID: 39053830 DOI: 10.1016/j.ijbiomac.2024.133984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Small interfering RNA (siRNA) holds promise as a therapeutic approach for various diseases, yet challenges persist in achieving efficient delivery, biodistribution, and minimizing off-target effects. Lipidic nanoformulations are being developed to address these hurdles, but the optimal dose for preclinical investigations remains unclear. This systematic review and meta-analysis aims to determine the optimal dose of nanoformulated siRNA and explore factors influencing dose and biodistribution, informing future research in this field. A comprehensive search across four electronic databases identified 25 potential studies, with 15 selected for meta-analysis after screening. Quality assessment was conducted using SYRCLE's risk of bias tool modified for animal studies based on research question. Study found an average siRNA dose of 1.513 ± 0.377 mg/kg with mean downregulation of 65.79 % achieved, with siRNA-LNPs mainly accumulating in the liver. While individual factors showed no significant correlation, a positive association between dose and downregulation was observed, alongside other influencing factors. Extrapolating intravenous doses to potential oral doses, we suggest an initial oral dose range of 1.5 to 8 mg/kg, considering siRNA-LNPs bioavailability. These findings contribute to advancing RNA interference research and encourage further exploration of siRNA-based treatments in personalized medicine.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bakr Ahmed
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India.
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
2
|
Matthaei J, Bonat WH, Kerb R, Tzvetkov MV, Strube J, Brunke S, Sachse-Seeboth C, Sehrt D, Hofmann U, von Bornemann Hjelmborg J, Schwab M, Brockmöller J. Inherited and Acquired Determinants of Hepatic CYP3A Activity in Humans. Front Genet 2020; 11:944. [PMID: 32973880 PMCID: PMC7472781 DOI: 10.3389/fgene.2020.00944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Human CYP3A enzymes (including CYP3A4 and CYP4A5) metabolize about 40% of all drugs and numerous other environmental and endogenous substances. CYP3A activity is highly variable within and between humans. As a consequence, therapy with standard doses often results in too low or too high blood and tissue concentrations resulting in therapeutic failure or dose-related adverse reactions. It is an unanswered question how much of the big interindividual variation in CYP3A activity is caused by genetic or by environmental factors. This question can be answered by the twin study approach. Using midazolam as CYP3A probe drug, we studied 43 monozygotic and 14 dizygotic twins and measured midazolam and its metabolite 1-OH-midazolam. In addition, endogenous biomarkers of CYP3A activity, 4ß-OH-cholesterol and 6ß-OH-cortisol, were analyzed. Additive genetic effects accounted for only 15% of the variation in midazolam AUC, whereas 48% was attributed to common environmental factors. In contrast, 73, 56, and 31% of 1-OH-midazolam, 4ß-OH-cholesterol and 6ß-OH-cortisol variation was due to genetic effects. There was a low phenotypic correlation between the four CYP3A biomarkers. Only between midazolam and its 1-OH-metabolite, and between midazolam and 6ß-OH-cortisol we found significant bivariate genetic correlations. Midazolam AUC differed depending on the CYP3A4∗22 variant (p = 0.001) whereas plasma 4ß-OH-cholesterol was significantly lower in homozygous carriers of CYP3A5∗3 (p = 0.02). Apparently, non-genomic factors played a dominant role in the inter-individual variation of the CYP3A probe drug midazolam. A small intra-individual pharmacokinetic variation after repeated administration of midazolam was rated earlier as indication of high heritability of CYP3A activity, but according to present data that could also largely be due to constant environmental factors and/or heritability of liver blood flow. The higher heritabilities of 4ß-OH-cholesterol and of 1-OH-midazolam may deserve further research on the underlying factors beyond CYP3A genes. Clinical Trial Registration: ClinicalTrials.gov: NCT01845194 and EUDRA-CT: 2008-006223-31.
Collapse
Affiliation(s)
- Johannes Matthaei
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Wagner Hugo Bonat
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Reinhold Kerb
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Mladen Vassilev Tzvetkov
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Jakob Strube
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Stefanie Brunke
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Cordula Sachse-Seeboth
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Daniel Sehrt
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jürgen Brockmöller
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
3
|
Rudeck J, Bert B, Marx-Stoelting P, Schönfelder G, Vogl S. Liver lobe and strain differences in the activity of murine cytochrome P450 enzymes. Toxicology 2018; 404-405:76-85. [PMID: 29879457 DOI: 10.1016/j.tox.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 (CYP) enzyme superfamily is the most important enzyme system for phase I biotransformation. For toxico- and pharmacokinetic studies, use of liver-based microsomes, including those of mice, is state-of-the-art to study CYP-dependent metabolism. However, reproducibility and interpretation of these data is still very variable, partly because current testing guidelines do not cover details on organ sampling and potential liver lobe differences. Hence, we analyzed CYP activity, CYP protein content, mRNA expression of CYP1A, CYP2C, CYP2D and CYP3A isozymes, and cytochrome P450 reductase (CPR) activity of the four different liver lobes and processus papillaris of male C57BL/6J mice in comparison to whole liver. Additionally, we used whole liver of Balb/cJ and 129S1/SvImJ for strain comparison. Our data show significant differences in CYP activity, being most prominent in lobus sinister lateralis and lobus medialis, and lowest in processus papillaris. These differences were not caused by varying Cyp gene expression or CYP protein level, but partly correspond with lobe specific CPR activities. We also observed significant strain differences in CYP mRNA expression and activities with overall high activities in 129S1/SvImJ mice and low activities in Balb/cJ mice compared to C57BL/6J mice. In addition, strain specific differences in CYP2C and CYP2D activity seem to be reflected in strain dependent differences in CPR activity. In summary, our results indicate that in mice CYP activity and gene expression are strain dependent and may vary highly between liver lobes. To ensure reproducibility and comparability of different probes and studies, this should be taken into account when liver samples are collected for the analysis of CYP-dependent metabolism.
Collapse
Affiliation(s)
- Juliane Rudeck
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Bettina Bert
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Charité - Universitätsmedizin Berlin, Cooperate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Silvia Vogl
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
4
|
Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016; 29:1252-69. [PMID: 27404394 DOI: 10.1021/acs.chemrestox.6b00174] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant , Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Céline Merg
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|