1
|
Maria DN, Ibrahim MM, Kim MJ, Maria SN, White WA, Wang X, Hollingsworth TJ, Jablonski MM. Evaluation of Pregabalin bioadhesive multilayered microemulsion IOP-lowering eye drops. J Control Release 2024; 373:667-687. [PMID: 39079659 PMCID: PMC11384292 DOI: 10.1016/j.jconrel.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
In spite of available treatment options, glaucoma continues to be a leading cause of irreversible blindness in the world. Current glaucoma medications have multiple limitations including: lack of sustained action; requirement for multiple dosing per day, ocular irritation and limited options for drugs with different mechanisms of action. Previously, we demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. The current study was designed to evaluate pregabalin microemulsion eye drops and to estimate its efficacy in humans using in silico methods. Molecular docking studies of pregabalin against CACNA2D1 of mouse, rabbit, and human were performed. Pregabalin microemulsion eye drops were characterized using multiple in vivo studies and its stability was evaluated over one year at different storage conditions. Molecular docking analyses and QSPR of pregabalin confirmed its suitability as a new IOP-lowering medication that functions using a new mechanism of action by binding to CACNA2D1 in all species evaluated. Because of its prolonged corneal residence time and corneal penetration enhancement, a single topical application of pregabalin ME can provide an extended IOP reduction of more than day in different animal models. Repeated daily dosing for 2 months confirms the lack of any tachyphylactic effect, which is a common drawback among marketed IOP-lowering medications. In addition, pregabalin microemulsion demonstrated good physical stability for one year, and chemical stability for 3-6 months if stored below 25 °C. Collectively, these outcomes greatly support the use of pregabalin eye drops as once daily IOP-lowering therapy for glaucoma management.
Collapse
Affiliation(s)
- Doaa N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Minjae J Kim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sara N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - William A White
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - T J Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
2
|
Swain R, Moharana A, Habibullah S, Nandi S, Bose A, Mohapatra S, Mallick S. Ocular delivery of felodipine for the management of intraocular pressure and inflammation: Effect of film plasticizer and in vitro in vivo evaluation. Int J Pharm 2023:123153. [PMID: 37339688 DOI: 10.1016/j.ijpharm.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
Glaucoma may cause irreversible eyesight loss and damage to the optic nerve. Trabecular meshwork obstruction may raise intraocular pressure (IOP) in open-angle and/or closed-angle type inflammatory glaucoma. Ocular delivery of felodipine (FEL) has been undertaken for the management of intraocular pressure and inflammation. FEL film was formulated using different plasticizers, and IOP has been assessed using a normotensive rabbit eye model. Ocular acute inflammation induced by carrageenan has also been monitored. Drug release has been enhanced significantly (93.9 % in 7 h) in the presence of DMSO (FDM) as a plasticizer in the film compared to others (59.8 to 86.2 % in 7 h). The same film also exhibited the highest ocular permeation of 75.5 % rather than others (50.5 to 61.0 %) in 7 h. Decreased IOP was maintained up to 8 h after ocular application of FDM compared to the solution of FEL only up to 5 h. Ocular inflammation has almost been disappeared within 2 h of using the film (FDM), whereas inflammation has been continued even after 3 h of the induced rabbit without film. DMSO plasticized felodipine film could be used for the better management of IOP and associated inflammation.
Collapse
Affiliation(s)
- Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ankita Moharana
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Anindya Bose
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Novac M, Musuc AM, Ozon EA, Sarbu I, Mitu MA, Rusu A, Gheorghe D, Petrescu S, Atkinson I, Lupuliasa D. Manufacturing and Assessing the New Orally Disintegrating Tablets, Containing Nimodipine-hydroxypropyl-β-cyclodextrin and Nimodipine-methyl-β-cyclodextrin Inclusion Complexes. Molecules 2022; 27:molecules27062012. [PMID: 35335371 PMCID: PMC8955142 DOI: 10.3390/molecules27062012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study was to manufacture new orally disintegrating tablets containing nimodipine-hydroxypropyl-β-cyclodextrin and nimodipine-methyl-β-cyclodextrin inclusion complexes. For obtaining a better quality of the manufactured tablets, three methods of the preparation of inclusion complexes, in a 1:1 molar ratio, were used comparatively; namely, a solid-state kneading method and two liquid state coprecipitation and lyophilization techniques. The physical and chemical properties of the obtained inclusion complexes, as well as their physical mixtures, were investigated using Fourier transformed infrared spectroscopy, scanning electron microscopy, X-ray diffraction analyses, and differential scanning calorimetry. The results showed that the lyophilization method can be successfully used for a better complexation. Finally, the formulation and precompression studies for tablets for oral dispersion, containing Nim-HP-β-CD and Nim-Me-β-CD inclusion complexes, were successfully assessed.
Collapse
Affiliation(s)
- Marian Novac
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.N.); (D.L.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.R.); (D.G.); (S.P.); (I.A.)
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (M.A.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.N.); (D.L.)
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (M.A.M.)
| | - Iulian Sarbu
- Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, Faculty of Pharmacy, “Titu Maiorescu” University, 004051 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (M.A.M.)
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.N.); (D.L.)
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (M.A.M.)
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.R.); (D.G.); (S.P.); (I.A.)
| | - Daniela Gheorghe
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.R.); (D.G.); (S.P.); (I.A.)
| | - Simona Petrescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.R.); (D.G.); (S.P.); (I.A.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.R.); (D.G.); (S.P.); (I.A.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.N.); (D.L.)
| |
Collapse
|
4
|
Duan HP, Liu R. Efficacy of Nimodipine Combined with Latanoprost in Treating Open-Angle Glaucoma and Its Influence on Ocular Hemodynamics and Visual Field Defects. Drug Des Devel Ther 2022; 16:749-757. [PMID: 35340339 PMCID: PMC8956248 DOI: 10.2147/dddt.s352876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Open-angle glaucoma is a common ophthalmic disease, which has a great impact on the vision of middle-aged and elderly people. Medication plays an important role in the treatment of glaucoma, so finding effective drug treatment is of great significance to improve the quality of life of glaucoma patients. Objective To explore the curative effect of nimodipine combined with latanoprost in the treatment of open-angle glaucoma and its effect on ocular hemodynamics and visual field defects. Methods This study retrospectively analyzed the clinical data of 87 patients with open-angle glaucoma who came to the Shanxi Province Fenyang Hospital and The First Affiliated Hospital of Shanxi Datong University for treatment from January 2019 to January 2021. According to different treatment plans, the patients were divided into two groups: an observation group (n = 46) treated with nimodipine combined with latanoprost, and a control group (n = 41) treated by latanoprost monotherapy. Treatment efficacy, hemodynamics, visual field defects, 24-hour peak intraocular pressure, binocular optic disc parameters, adverse reactions and quality of life were recorded and compared between two groups of patients. Results The overall therapeutic effect of the observation group was significantly better than that in the control group. After treatment, ocular hemodynamics, visual field defects, 24-hour peak intraocular pressure, binocular optic disc parameters and life quality of both groups were obviously improved compared to those before treatment, with more significant improvements in the observation group. In addition, there was no significant difference in the incidence of adverse reactions between the two groups. Conclusion Nimodipine combined with latanoprost eye drops is effective in the treatment of primary open-angle glaucoma, which could effectively improve the ocular hemodynamics and visual field defects of patients with fewer adverse reactions and higher safety. Therefore, it can be further promoted and used in clinical practice.
Collapse
Affiliation(s)
- Hui-Ping Duan
- Department of Ophthalmology, Shanxi Province Fenyang Hospital, Fenyang, 032200, Shanxi Province, People’s Republic of China
- Correspondence: Hui-Ping Duan, Department of Ophthalmology, Shanxi Province Fenyang Hospital, Fenyang, 032200, Shanxi Province, People’s Republic of China, Tel +86-13037099450, Email
| | - Rong Liu
- Department of Ophthalmology, Shanxi Datong University, Datong, 037000, Shanxi Province, People’s Republic of China
| |
Collapse
|
5
|
Shelley H, Annaji M, Smith FT, Babu RJ. Difluprednate-Hydroxypropyl- β-Cyclodextrin-Based Ophthalmic Solution for Improved Delivery in a Porcine Eye Model. J Ocul Pharmacol Ther 2021; 38:92-101. [PMID: 34665027 DOI: 10.1089/jop.2021.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Difluprednate (DFP) is an approved corticosteroid, available as an ophthalmic emulsion (Durezol®), used to treat pain and inflammation of the eye following ocular surgeries. This study utilized hydroxypropyl-β-cyclodextrin (HPBCD)-based DFP ophthalmic solution for improved ocular delivery. Methods: The DFP-HPBCD complex formation was studied in the liquid and solid states. Phase solubility, molecular docking studies, differential scanning calorimetry, and Fourier transform infrared spectroscopy suggested inclusion complexation of DFP and HPBCD. Results: DFP-HPBCD-based eye drops (solution) provided 16 and 26 times higher transcorneal permeation when compared to the suspension (no HPBCD, control) and Durezol, respectively (P < 0.001). In addition, ocular drug distribution studies conducted in continuously perfused whole porcine eyes showed DFP permeated into all of the ocular tissues in significantly higher amounts than Durezol. Conclusions: The solution-based eye drops in this study is iso-osmotic, safe, and more permeable in porcine eyes compared to Durezol.
Collapse
Affiliation(s)
- Haley Shelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Forrest T Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Li X, Fang J, Xin M, Li Q, Wang J, Yang H, Wu X. Rebaudioside A/TPGS mixed nanomicelles as promising nanocarriers for nimodipine ocular delivery. Drug Deliv Transl Res 2020; 11:1119-1132. [PMID: 32783152 DOI: 10.1007/s13346-020-00834-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nimodipine (NMD), a calcium channel blocker, has demonstrated benefits in treating glaucoma. However, its ocular therapeutic application remains limited due to its poor aqueous solubility, which restrains the development of an ophthalmic formulation. Thus, the present study aimed to formulate an NMD micelle ophthalmic solution to enhance the potential of NMD in an ocular topical formulation to treat glaucoma. The NMD micelle ophthalmic solution was formulated with nanocarriers composed of rebaudioside A and D-α-tocopheryl polyethylene glycol 1000 succinate. Spherical mixed micelles were optimized and obtained at a small micelle size 13.429 ± 0.181 nm with a narrow size distribution (polydispersity index 0.166 ± 0.023) and high encapsulation efficiency rate (99.59 ± 0.09%). Compared with free NMD, NMD in micelles had much greater in vitro membrane permeability and antioxidant activity. The NMD micelle ophthalmic solution was well tolerated in rabbit eyes. It profoundly improved the in vivo intraocular permeation of NMD, and in vivo intraocular pressure reduction and improved miosis were also observed. Accordingly, this NMD micelle ophthalmic solution might be a promising ocular formulation to treat glaucoma. Graphical abstract.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Yang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Ibrahim MM, Maria DN, Mishra SR, Guragain D, Wang X, Jablonski MM. Once Daily Pregabalin Eye Drops for Management of Glaucoma. ACS NANO 2019; 13:13728-13744. [PMID: 31714057 PMCID: PMC7785203 DOI: 10.1021/acsnano.9b07214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Elevated intraocular pressure (IOP) is the most significant risk factor contributing to visual field loss in glaucoma. Unfortunately, the deficiencies associated with current therapies have resulted in reduced efficacy, several daily dosings, and poor patient compliance. Previously, we identified the calcium voltage-gated channel auxiliary subunit alpha2delta 1 gene (Cacna2d1) as a modulator of IOP and demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. Unfortunately, IOP returned to baseline at 6 h after dosing. In the current study, we develop a once daily topical pregabalin-loaded multiple water-in-oil-in-water microemulsion formulation to improve drug efficacy. We characterize our formulations using multiple in vitro and in vivo evaluations. Our lead formulation provides continuous release of pregabalin for up to 24 h. Because of its miniscule droplet size (<20 nm), our microemulsion has a transparent appearance and should not blur vision. It is also stable at one month of storage at temperatures ranging from 5 to 40 °C. Our formulation is nontoxic, as illustrated by a cell toxicity study and slit-lamp biomicroscopic exams. CACNA2D1 is highly expressed in both the ciliary body and the trabecular meshwork, where it functions to modulate IOP. A single drop of our lead pregabalin formulation reduces IOP by greater than 40%, which does not return to baseline until >30 h post-application. Although there were no significant differences in the amplitude of IOP reduction between the formulations we tested, a significant difference was clearly observed in their duration of action. Our multilayered microemulsion is a promising carrier that sustains the release and prolongs the duration of action of pregabalin, a proposed glaucoma therapeutic.
Collapse
Affiliation(s)
- Mohamed Moustafa Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Doaa Nabih Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sanjay R. Mishra
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Deepa Guragain
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Corresponding Author:
| |
Collapse
|
8
|
Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci 2019; 221:362-376. [PMID: 30797820 DOI: 10.1016/j.lfs.2019.02.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
The human eye being a complex and a very sensitive organ makes the drug delivery task challenging. An increase in the intra-ocular pressure at the aqueous humour leads to glaucoma which is not only indecipherable but can also be the reason of blindness for many. The presently available marketed formulations using anti-glaucoma drugs have issues of either difficulty in crossing the blood- retinal barrier or lower systemic bioavailability. Hence, the drugs having lower therapeutic index would need to be administered frequently, which eventually lead to deposition of concentrated solutions at ocular site, producing toxic effects and cellular damage to the eye. To overcome these drawbacks the novel drug delivery systems like In-situ gels, liposomes, niosomes, hydrogel, dendrimers, nanoparticles, solid lipid nanoparticles, Microneedles or ocular inserts play an important role to enhance the therapeutic efficacy of the anti-glaucomic drugs. The present review briefs the current treatments in terms of drugs used and in detail the impact of utilizing the above mentioned novel drug delivery systems in the treatment of glaucoma.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India.
| | - Rahul Rajpurohit
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Sushmita Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Wang F, Bao X, Fang A, Li H, Zhou Y, Liu Y, Jiang C, Wu J, Song X. Nanoliposome-Encapsulated Brinzolamide-hydropropyl-β-cyclodextrin Inclusion Complex: A Potential Therapeutic Ocular Drug-Delivery System. Front Pharmacol 2018; 9:91. [PMID: 29487529 PMCID: PMC5816959 DOI: 10.3389/fphar.2018.00091] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/26/2018] [Indexed: 02/05/2023] Open
Abstract
Novel ocular drug delivery systems (NODDSs) remain to be explored to overcome the anatomical and physiological barriers of the eyes. This study was to encapsulate brinzolamide (BRZ)-hydropropyl-β-cyclodextrin (HP-β-CD) inclusion complex (HP-β-CD/BRZ) into nanoliposomes and investigate its potential as one of NODDS to improve BRZ local glaucomatous therapeutic effect. HP-β-CD/BRZ was firstly prepared to enhance the solubility of poorly water-soluble BRZ. The HP-β-CD/BRZ loaded nanoliposomes (BCL) were subsequently constructed by thin-film dispersion method. After the optimization of the ratio of BRZ to HP-β-CD, the optimal BCL showed an average size of 82.29 ± 6.20 nm, ζ potential of -3.57 ± 0.46 mV and entrapment efficiency (EE) of 92.50 ± 2.10% with nearly spherical in shape. The X-ray diffraction (XRD) confirmed the formation of HP-β-CD/BRZ and BCL. The in vitro release study of BCL was evaluated using the dialysis technique, and BCL showed moderate sustained release. BCL (1 mg/mL BRZ) showed a 9.36-fold increase in the apparent permeability coefficient and had a sustained and enhanced intraocular pressure reduction efficacy when compared with the commercially available formulation (BRZ-Sus) (10 mg/mL BRZ). In conclusion, BCL might have a promising future as a NODDS for glaucoma treatment.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xingting Bao
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,West China School of Public Health, Sichuan University, Chengdu, China
| | - Huili Li
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunling Jiang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhang Z, Yu J, Zhou Y, Zhang R, Song Q, Lei L, Li X. Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery. Colloids Surf B Biointerfaces 2018; 164:436-443. [PMID: 29438842 DOI: 10.1016/j.colsurfb.2018.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
The low bioavailability exhibits by conventional ocular formulation owing to rapid precorneal clearance and lower corneal permeability can be overcame by the application of the gelling system. In the present study, a prodrug supramolecular hydrogel derived from succinated dexamethasone (Dex-SA) was fabricated using a pH hydrolytic strategy and explored as a "self-delivery" system for ophthalmic drugs. The self-assembled Dex-SA supramolecular hydrogel exhibited a typical nano-fibrous microstructure and was thixotropic. Both dexamethasone (Dex) and Dex-SA prodrug sustainably released from Dex-SA supramolecular hydrogel in a period of 120 h in vitro release study, and the initial pH value of hydrogel significantly influence on the release ratio of Dex/Dex-SA. Furthermore, the lyophilized Dex-SA supramolecular hydrogel displayed long-term stability without causing any apparent hydrolysis of Dex-SA at -20 °C over 30 day and quickly re-formed a hydrogel after dissolving into aqueous solution. The formed Dex-SA supramolecular hydrogel had lower cytotoxicity than Dex at drug concentration up to 2.5 mM, and exhibited a comparable anti-inflammatory efficacy to a Dex sodium phosphate (Dexp) aqueous solution in lipopolysaccharide-activated RAW264.7 macrophages. Topical instillation of the Dex-SA supramolecular hydrogel showed excellent intraocular biocompatibility and it was not an irritant in rabbit eyes. More importantly, the Dex-SA supramolecular hydrogel provided a prolonged precorneal retention and significantly enhanced the ocular bioavailability over Dexp aqueous solution after topical instillation. Overall, this work illustrates an effective approach for the development of prodrug supramolecular hydrogels to extend the precorneal retention and enhance ocular bioavailability of drugs after topical instillation.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Jing Yu
- Institute of Biomaterials and Engineering, Wenzhou Medical University, and Wenzhou Institute of Biomaterials and Engineering, Wenzhou 325035, PR China
| | - Yanfang Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Renshu Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Qianqian Song
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|