1
|
Yassin AEB, Massadeh S, Alshwaimi AA, Kittaneh RH, Omer ME, Ahmad D, Aodah AH, Shakeel F, Halwani M, Alanazi SA, Alam P. Tween 80-Based Self-Assembled Mixed Micelles Boost Valsartan Transdermal Delivery. Pharmaceuticals (Basel) 2023; 17:19. [PMID: 38256853 PMCID: PMC10819404 DOI: 10.3390/ph17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Valsartan (Val) is an important antihypertensive medication with poor absorption and low oral bioavailability. These constraints are due to its poor solubility and dissolution rate. The purpose of this study was to optimize a mixed micelle system for the transdermal delivery of Val in order to improve its therapeutic performance by providing prolonged uniform drug levels while minimizing drug side effects. Thin-film hydration and micro-phase separation were used to produce Val-loaded mixed micelle systems. A variety of factors, including the surfactant type and drug-to-surfactant ratio, were optimized to produce micelles with a low size and high Val entrapment efficiency (EE). The size, polydispersity index (PDI), zeta potential, and drug EE of the prepared micelles were all measured. The in vitro drug release profiles were assessed using dialysis bags, and the permeation through abdominal rat skin was assessed using a Franz diffusion cell. All formulations had high EE levels exceeding 90% and low particle charges. The micellar sizes ranged from 107.6 to 191.7 nm, with average PDI values of 0.3. The in vitro release demonstrated a uniform slow rate that lasted one week with varying extents. F7 demonstrated a significant (p < 0.01) transdermal efflux of 68.84 ± 3.96 µg/cm2/h through rat skin when compared to the control. As a result, the enhancement factor was 16.57. In summary, Val-loaded mixed micelles were successfully prepared using two simple methods with high reproducibility, and extensive transdermal delivery was demonstrated in the absence of any aggressive skin-modifying enhancers.
Collapse
Affiliation(s)
- Alaa Eldeen B. Yassin
- College of Pharmacy, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia (S.A.A.)
| | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
- Joint Centers of Excellence Program, KACST-BWH/Harvard Center of Excellence for Biomedicine, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | | | - Raslan H. Kittaneh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine;
| | - Mustafa E. Omer
- Pharmacy Program, College of Health and Sport Sciences, University of Bahrain, Manama 32038, Bahrain;
| | - Dilshad Ahmad
- College of Pharmacy, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia (S.A.A.)
| | - Al Hassan Aodah
- Advanced Diagnostic and Therapeutic Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Saleh A. Alanazi
- College of Pharmacy, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia (S.A.A.)
- Pharmaceutical Care Services, King Abdulaziz Medical City, National Guard Health Affairs (NGHA), Riyadh 11426, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Stanciu MC, Nichifor M, Teacă CA. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023; 9:500. [PMID: 37367171 DOI: 10.3390/gels9060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer-bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marieta Nichifor
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
4
|
Islam MS, Sharif A, Kwan N, Tam KC. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol Pharm 2022; 19:1248-1272. [PMID: 35333534 DOI: 10.1021/acs.molpharmaceut.2c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Collapse
Affiliation(s)
- Muhammad Shahidul Islam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Anjiya Sharif
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nathania Kwan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Stanciu MC, Nichifor M, Ailiesei GL. Bile salts adsorption on dextran-based hydrogels. Int J Biol Macromol 2021; 190:270-283. [PMID: 34481856 DOI: 10.1016/j.ijbiomac.2021.08.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Dextran-based gels bearing two types of pendant N, N-dimethyl-N-alkyl-N-(2-hydroxypropyl) ammonium chloride groups with different alkyl chain length substituents (C2 and C12/C16, respectively) at the quaternary nitrogen were synthesized and structural characteristics of the compounds were studied by elemental analysis, potentiometric titration, FTIR and NMR spectroscopy. The morphology and size of polymeric microspheres were examined by SEM and their swelling behavior in water was also investigated. The hydrogels were evaluated as sorbents for sodium cholate (NaCA) and sodium deoxycholate (NaDCA) in water and 10 mM NaCl solutions. Different isotherm models (nearest-neighbor-interaction, Langmuir, Freundlich, Dubinin-Raduskevich, Sips and Hill) were used to elucidate the adsorption mechanism and established the characteristics of the most efficient polymeric sorbent. The maximum adsorption capacity of the gels was highly controlled by gel hydrophobicity which enhanced gel-bile salt affinity but decreased binding cooperativity. Swelling porosity, ionic strength and ligand lipophilicity were other factors that also affected the adsorption process. The hydrogel having 25 mol% pendant dodecyl groups retained the maximum amount of bile salts (1051 mg NaCA/g and 1138 mg NaDCA/g). All hydrophobically modified hydrogels revealed a better affinity and strength of binding compared to commercial Cholestyramine®.
Collapse
Affiliation(s)
- Magdalena Cristina Stanciu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania.
| | - Marieta Nichifor
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania
| | - Gabriela Liliana Ailiesei
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania
| |
Collapse
|
6
|
Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hanurry EY, Chou HY, Lai JY, Tsai HC, Yang JM, Chang YH. Bioinspired Composite, pH-Responsive Sodium Deoxycholate Hydrogel and Generation 4.5 Poly(amidoamine) Dendrimer Improves Cancer Treatment Efficacy via Doxorubicin and Resveratrol Co-Delivery. Pharmaceutics 2020; 12:E1069. [PMID: 33182410 PMCID: PMC7696475 DOI: 10.3390/pharmaceutics12111069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Maximizing the antitumor efficacy of doxorubicin (DOX) with a new drug delivery strategy is always desired in the field of biomedical science. Because the clinical applications of DOX in the treatment of cancer is limited by the side effects related to the dose. Herein, we report the co-loading of DOX and resveratrol (RESV) using an injectable in situ formed sodium deoxycholate hydrogel (Na-DOC-hyd) at the pH of the tumor extracellular microenvironment. The sequential, controlled, and sustained release of RESV and DOX for synergistic antitumor effects was confirmed by entrapping G4.5-DOX in the RESV-loaded Na-DOC hydrogel (Na-DOC-hyd-RESV). The synergistic antitumor activity of Na-DOC-hyd-RESV+G4.5-DOX was assessed on HeLa cell xenograft tumor in BALB/c nude mice. In the MTT biocompatibility assay, both the G4.5 PAMAM dendrimer and Na-DOC-hyd exhibited negligible cytotoxicity up to the highest dose of 2.0 mg mL-1 in HeLa, MDA-MB-231, and HaCaT cells. The release profiles of DOX and RESV from the Na-DOC-hyd-RESV+G4.5-DOX confirmed the relatively rapid release of RESV (70.43 ± 1.39%), followed by that of DOX (54.58 ± 0.62%) at pH 6.5 in the 7 days of drug release studies. A single intratumoral injection of Na-DOC-hyd-RESV+G4.5-DOX maximally suppressed tumor growth during the 28 days of the treatment period. Na-DOC-hyd-RESV+G4.5-DOX did not cause any histological damage in the major visceral organs. Therefore, this Na-DOC-hydrogel for dual drugs (DOX and RESV) delivery at the pH of the tumor extracellular microenvironment is a promising, safe, and effective combination for antitumor chemotherapy.
Collapse
Affiliation(s)
- Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Jen Ming Yang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|