1
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Pan Y, Liu L, Mou X, Cai Y. Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS NANO 2023; 17:20875-20924. [PMID: 37871328 DOI: 10.1021/acsnano.3c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer with a complex pathological process is a major disease to human welfare. Due to the imbalance between oxygen (O2) supply and consumption, hypoxia is a natural characteristic of most solid tumors and an important obstacle for cancer therapy, which is closely related to tumor proliferation, metastasis, and invasion. Various strategies to exploit the feature of tumor hypoxia have been developed in the past decade, which can be used to alleviate tumor hypoxia, or utilize the hypoxia for targeted delivery and diagnostic imaging. The strategies to alleviate tumor hypoxia include delivering O2, in situ O2 generation, reprogramming the tumor vascular system, decreasing O2 consumption, and inhibiting HIF-1 related pathways. On the other side, hypoxia can also be utilized for hypoxia-responsive chemical construction and hypoxia-active prodrug-based strategies. Taking advantage of hypoxia in the tumor region, a number of methods have been applied to identify and keep track of changes in tumor hypoxia. Herein, we thoroughly review the recent progress of nanomedicine strategies in both conquering and utilizing hypoxia to combat cancer and put forward the prospect of emerging nanomaterials for future clinical transformation, which hopes to provide perspectives in nanomaterials design.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
4
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
5
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
7
|
Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AEL, Barik SK, Gupta VK, Singh BN. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86:706-731. [PMID: 34062265 DOI: 10.1016/j.semcancer.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Shanghai 200032, China.
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Atanas G Atanasov
- Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saroj K Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
8
|
Adibfar S, Masjedi A, Nazer A, Rashidi B, Karpisheh V, Izadi S, Hassannia H, Gholizadeh Navashenaq J, Mohammadi H, Hojjat-Farsangi M, Tarokhian H, Jadidi-Niaragh F. Combined inhibition of EZH2 and CD73 molecules by folic acid-conjugated SPION-TMC nanocarriers loaded with siRNA molecules prevents TNBC progression and restores anti-tumor responses. Life Sci 2022; 309:121008. [PMID: 36179812 DOI: 10.1016/j.lfs.2022.121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal function or overexpression of CD73 and EZH2 within the tumor microenvironment and tumor cells enhances tumor growth and progression, and in many cases, causes drug resistance. Hence, it seems that silencing the expression of CD73 and EZH2 molecules in breast cancer reduces cancer development and enhances anti-tumor immune responses. METHODS we used siRNA-loaded superparamagnetic iron oxide (SPIONs) nanoparticles (NPs) coated with trimethyl chitosan (TMC) and functionalized with folic acid for co-delivery of EZH2/CD73 siRNAs to 4 T1 murine cancer cells both in vitro and in vivo. RESULTS Combination therapy markedly inhibited cancer cells' proliferation, migration, and viability and induced apoptosis in vitro. Moreover, in vivo administration of this combination therapy promoted tumor regression and induced anti-tumor immune responses. DISCUSSION The findings indicated the CD73/EZH2 factors inhibition by SPION-TMC-FA NPs as a promising therapeutic strategy in breast cancer treatment.
Collapse
Affiliation(s)
- Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Masjedi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Atefeh Nazer
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
10
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
11
|
Sakano Y, Noda T, Kobayashi S, Kitagawa A, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Asaoka T, Tanemura M, Umeshita K, Mimori K, Doki Y, Eguchi H. Clinical Significance of Acylphosphatase 1 Expression in Combined HCC-iCCA, HCC, and iCCA. Dig Dis Sci 2022; 67:3817-3830. [PMID: 34626299 DOI: 10.1007/s10620-021-07266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Combined hepatocellular and cholangiocarcinoma is a rare primary liver cancer with histological features of both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Little is known about the prognostic features and molecular mechanism of cHCC-iCCA. Acylphosphatase 1 is a cytosolic enzyme that produces acetic acid from acetyl phosphate and plays an important role in cancer progression. AIMS We evaluated the clinical significance of ACYP1 expression in cHCC-iCCA, HCC, and iCCA. METHODS ACYP1 immunohistochemistry was performed in 39 cases diagnosed with cHCC-iCCA. The prognosis was evaluated in three different cohorts (cHCC-iCCA, HCC, and iCCA). The relationships between ACYP1 expression and cell viability, migration, invasiveness, and apoptosis were examined using siRNA methods in vitro. In vivo subcutaneous tumor volumes and cell apoptosis were evaluated after downregulation of ACYP1 expression. RESULTS Almost half of the patients with cHCC-iCCA were diagnosed with high ACYP1 expression. In all three cohorts, the cases with high ACYP1 expression had significantly lower overall survival, and high ACYP1 expression was identified as an independent prognostic factor. Downregulation of ACYP1 reduced the proliferative capacity, migration, and invasiveness of both HCC and iCCA cells. Moreover, knockdown of ACYP1 increased the ratio of apoptotic cells and decreased the expression of anti-apoptosis proteins. In vivo tumor growth was significantly inhibited by the transfection of ACYP1 siRNA, and the number of apoptotic cells increased. CONCLUSION High ACYP1 expression could influence the prognosis of cHCC-iCCA, HCC, and iCCA patients. In vitro ACYP1 expression influences the tumor growth and cell viability in both HCC and iCCA by regulating anti-apoptosis proteins.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Kitagawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Koji Umeshita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Yan Y, Li H, Yao H, Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.932976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF), which plays a crucial role in oxygen homeostasis, contributes to immunosuppression, tumor angiogenesis, multidrug resistance, photodynamic therapy resistance, and metastasis. HIF as a therapeutic target has attracted scientists’ strong academic research interests. Short interfering RNA (siRNA) and antisense oligonucleotide (ASO) are the more promising and broadly utilized methods for oligonucleotide-based therapy. Their physicochemical characteristics such as hydrophilicity, negative charge, and high molecular weight make them impossible to cross the cell membrane. Moreover, siRNA and ASO are subjected to a rapid deterioration in circulation and cannot translocate into nuclear. Delivery of siRNA and ASO to specific gene targets should be realized without off-target gene silencing and affecting the healthy cells. Nanoparticles as vectors for delivery of siRNA and ASO possess great advantages and flourish in academic research. In this review, we summarized and analyzed regulation mechanisms of HIF under hypoxia, the significant role of HIF in promoting tumor progression, and recent academic research on nanoparticle-based delivery of HIF siRNA and ASO for cancer immunotherapy, antiangiogenesis, reversal of multidrug resistance and radioresistance, potentiating photodynamic therapy, inhibiting tumor metastasis and proliferation, and enhancing apoptosis are reviewed in this thesis. Furthermore, we hope to provide some rewarding suggestions and enlightenments for targeting HIF gene therapy.
Collapse
|
13
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
14
|
Habib S, Singh M. Carbon-based Nanomaterials for delivery of small RNA molecules: a focus on potential cancer treatment applications. Pharm Nanotechnol 2022; 10:PNT-EPUB-124198. [PMID: 35670355 DOI: 10.2174/2211738510666220606102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleic acid-mediated therapy holds immense potential in the treatment of recalcitrant human diseases such as cancer. This is underscored by advances in understanding the mechanisms of gene regulation. In particular, the endogenous protective mechanism of gene silencing known as RNA interference (RNAi) has been extensively exploited. METHODS We review here the developments from 2011 to 2021, in the use of nanographene oxide, carbon nanotubes, fullerenes, carbon nanohorns, carbon nanodots and nanodiamonds for the delivery of therapeutic small RNA molecules. RESULTS Appropriately designed effector molecules such as small interfering RNA (siRNA), can, in theory, silence the expression of any disease-causing gene. Alternatively, siRNA can be generated in vivo through the introduction of plasmid-based short hairpin RNA (shRNA) expression vectors. Other small RNAs such as micro RNA (miRNA) also function in post-transcriptional gene regulation and are aberrantly expressed under disease conditions. The miRNA-based therapy involves either restoration of miRNA function through the introduction of miRNA mimics; or the inhibition of miRNA function by delivering anti-miRNA oligomers. However, the large size, hydrophilicity, negative charge and nuclease-sensitivity of nucleic acids necessitate an appropriate carrier for their introduction as medicine into cells. CONCLUSION While numerous organic and inorganic materials have been investigated for this purpose, the perfect carrier agent remains elusive. In recent years, carbon-based nanomaterials have received widespread attention in biotechnology due to their tunable surface characteristics, mechanical, electrical, optical and chemical properties.
Collapse
Affiliation(s)
- Saffiya Habib
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
15
|
Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41:383-404. [PMID: 35366154 PMCID: PMC8975728 DOI: 10.1007/s10555-022-10025-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the “metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Collapse
Affiliation(s)
- Leela Rani Avula
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
16
|
Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Mennati A, Rostamizadeh K, Manjili HK, Fathi M, Danafar H. Co-delivery of siRNA and lycopene encapsulated hybrid lipid nanoparticles for dual silencing of insulin-like growth factor 1 receptor in MCF-7 breast cancer cell line. Int J Biol Macromol 2022; 200:335-349. [PMID: 34999039 DOI: 10.1016/j.ijbiomac.2021.12.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is expressed in malignant and normal breast tissue, and its intermittent activation by multiple IGF-1 signaling pathways leads to neoplasm cell proliferation, impaired apoptosis, increased survival, and resistance to cytotoxic therapeutic agents. Therefore, simultaneous suppression of the receptor and its cognate ligand would be a powerful promising strategy inhibiting malignant phenotypes of breast cancer cells. In the present study, Methoxypoly(ethylene glycol) - Poly(caprolactone) was hybridized with Dimethyldioctadecylammonium bromide (DDAB) cationic lipid (mPEG-PCL-DDAB) nanoparticles (NPs) and used as a carrier for simultaneous delivery of lycopene and insulin-like growth factor 1 receptor-specific lycopene encapsulated-mPEG-PCL-DDAB nanoparticle/siRNA to MCF-7 breast cancer cells. Then, the antitumor effects of this construct were evaluated in vitro. The results demonstrated that the synthesized mPEG-PCL-DDAB nanoparticle had suitable physicochemical properties. The use of mPEG-PCL-DDAB nanoparticle-loaded anti-insulin-like growth factor 1 receptor-siRNA and lycopene dramatically induced the process of apoptosis and arrested cell cycle in the MCF-7 tumor cell lines. In general, the findings of this study demonstrated the potency of mPEG-PCL-DDAB nanoparticles for dual delivery of siRNA, and lycopene in breast cancer cell lines followed the induction of apoptosis.
Collapse
Affiliation(s)
- Afsaneh Mennati
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamidreza Kheiri Manjili
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
18
|
Akram Keramat AX, Kadkhoda J, Farahzadi R, Fathi E, Davaran S. The potential of Graphene Oxide and reduced Graphene Oxide in diagnosis and treatment of Cancer. Curr Med Chem 2022; 29:4529-4546. [PMID: 35135444 DOI: 10.2174/0929867329666220208092157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a pioneer field of study; for engineering smart nanosystems in targeted diagnosis and treatment in cancer therapy. The potent therapy for different kinds of solid tumors should ideally target individually the cancerous cells and tissue with no impact on healthy cells in the body. Nano-sized graphene oxide (GO) and reduced graphene oxide (rGO) have phenomenal chemical versatility, high surface area ratio, and supernatural physical properties. The synergistic effects caused by the well-defined assembly of GO and rGO surface generate not only essential optical, mechanical, but also electronic behaviors. Developing novel multifunctional hybrid nanoparticles with great potential is highly considered in multimodal cancer treatment. GO, and rGO are engineered as a programmable targeting delivery system and combed with photonic energy they utilize in photothermal therapy. Its remarkable properties indicated its applications as a biosensor, bio-imaging for cancer diagnosis. In this current review, we show a remarkable highlight about GO, rGO, and discuss the notable applications for cancer diagnosis and treatment, and an overview of possible cellular signaling pathways that are affected by GO, rGO in cancer treatment.
Collapse
Affiliation(s)
- Akram X Akram Keramat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz-Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Kheshti AMS, Hajizadeh F, Barshidi A, Rashidi B, Ebrahimi F, Bahmanpour S, Karpisheh V, Noukabadi FK, Kiani FK, Hassannia H, Atyabi F, Kiaie SH, Kashanchi F, Navashenaq JG, Mohammadi H, Bagherifar R, Jafari R, Zolbanin NM, Jadidi-Niaragh F. Combination Cancer Immunotherapy with Dendritic Cell Vaccine and Nanoparticles Loaded with Interleukin-15 and Anti-beta-catenin siRNA Significantly Inhibits Cancer Growth and Induces Anti-Tumor Immune Response. Pharm Res 2022; 39:353-367. [PMID: 35166995 DOI: 10.1007/s11095-022-03169-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The invention and application of new immunotherapeutic methods can compensate for the inefficiency of conventional cancer treatment approaches, partly due to the inhibitory microenvironment of the tumor. In this study, we tried to inhibit the growth of cancer cells and induce anti-tumor immune responses by silencing the expression of the β-catenin in the tumor microenvironment and transmitting interleukin (IL)-15 cytokine to provide optimal conditions for the dendritic cell (DC) vaccine. METHODS For this purpose, we used folic acid (FA)-conjugated SPION-carboxymethyl dextran (CMD) chitosan (C) nanoparticles (NPs) to deliver anti-β-catenin siRNA and IL-15 to cancer cells. RESULTS The results showed that the codelivery of β-catenin siRNA and IL-15 significantly reduced the growth of cancer cells and increased the immune response. The treatment also considerably stimulated the performance of the DC vaccine in triggering anti-tumor immunity, which inhibited tumor development and increased survival in mice in two different cancer models. CONCLUSIONS These findings suggest that the use of new nanocarriers such as SPION-C-CMD-FA could be an effective way to use as a novel combination therapy consisting of β-catenin siRNA, IL-15, and DC vaccine to treat cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Drug Carriers
- Drug Compounding
- Female
- Gene Expression Regulation, Neoplastic
- Interleukin-15/administration & dosage
- Interleukin-15/chemistry
- Lymphocytes, Tumor-Infiltrating/immunology
- Magnetic Iron Oxide Nanoparticles
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNAi Therapeutics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Tumor Burden/drug effects
- Tumor Microenvironment
- beta Catenin/genetics
- Mice
Collapse
Affiliation(s)
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Simin Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rafieh Bagherifar
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naime Majidi Zolbanin
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2022; 11:789330. [PMID: 35083147 PMCID: PMC8784389 DOI: 10.3389/fonc.2021.789330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023] Open
Abstract
Digestive tumours, a common kind of malignancy worldwide, have recently led to the most tumour-related deaths. Angiogenesis, the process of forming novel blood vessels from pre-existing vessels, is involved in various physiological and pathological processes in the body. Many studies suggest that abnormal angiogenesis plays an important role in the growth, progression, and metastasis of digestive tumours. Therefore, anti-angiogenic therapy is considered a promising target for improving therapeutic efficacy. Traditional strategies such as bevacizumab and regorafenib can target and block the activity of proangiogenic factors to treat digestive tumours. However, due to resistance and some limitations, such as poor pharmacokinetics, their efficacy is not always satisfactory. In recent years, nanotechnology-based anti-angiogenic therapies have emerged as a new way to treat digestive tumours. Compared with commonly used drugs, nanoparticles show great potential in tumour targeted delivery, controlled drug release, prolonged cycle time, and increased drug bioavailability. Therefore, anti-angiogenic nanoparticles may be an effective complementary therapy to treat digestive tumours. In this review, we outline the different mechanisms of angiogenesis, the effects of nanoparticles on angiogenesis, and their biomedical applications in various kinds of digestive tumours. In addition, the opportunities and challenges are briefly discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
21
|
Karoon Kiani F, Izadi S, Ansari Dezfouli E, Ebrahimi F, Mohammadi M, Chalajour H, Mortazavi Bulus M, Nasr Esfahani M, Karpisheh V, Mahmoud Salehi Khesht A, Abbaszadeh-Goudarzi K, Soleimani A, Gholizadeh Navashenaq J, Ahmadi M, Hassannia H, Hojjat-Farsangi M, Shahmohammadi Farid S, Hashemi V, Jadidi-Niaragh F. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental models. Life Sci 2022; 288:120166. [PMID: 34813798 DOI: 10.1016/j.lfs.2021.120166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Following various immunotherapies, lack of proper anti-tumor immune responses is considered a significant problem in novel cancer therapeutic approaches. The expression of inhibitory checkpoint molecules on tumor-infiltrating T cells is one of the main reasons for the ineffectiveness of various immunotherapies. Therefore, we decided to inhibit two of the most important immune checkpoints expressed on tumor-associated T cells, PD-1 and A2aR. Ligation of PD-1 with PD-L1 and A2aR with adenosine significantly suppress T cell responses against tumor cells. Whitin tumors, specific inhibition of these molecules on T cells is of particular importance for successful immunotherapy as well as the elimination of treatment-associated side-effects. Thus, in this study, superparamagnetic iron oxide (SPION) nanoparticles (NPs) were covered by chitosan lactate (CL), functionalized with TAT peptide, and loaded with siRNA molecules against PD-1 and A2aR. Appropriate physicochemical properties of the prepared NPs resulted in efficient delivery of siRNA to tumor-derived T cells and suppressed the expression of A2aR and PD-1, ex vivo. T cell functions such as cytokine secretion and proliferation were considerably enhanced by the downregulation of these molecules which led to an increase in their survival time. Interestingly, treatment of CT26 and 4T1 mouse tumors with siRNA-loaded NPs not only inhibited tumor growth but also markedly increased anti-tumor immune responses and survival time. The results strongly support the efficacy of SPION-CL-TAT NPs loaded with anti-PD-1/A2aR siRNAs in cancer therapy and their further development for cancer patients in the near future.
Collapse
Affiliation(s)
- Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Mohammad Mohammadi
- Department of Cell and Molecular Biology, School of Advanced Sciences, Islamic Azad University, Tehran, Medical Branch, Iran
| | - Hengameh Chalajour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Mahmoud Salehi Khesht
- Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | | | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Maheshwari R, Gadeval A, Raval N, Kalia K, Tekade RK. Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112605. [PMID: 35525767 DOI: 10.1016/j.msec.2021.112605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This investigation reports the green approach for developing laser activatable nanoscale-graphene colloids (nGC-CO-FA) for chemo-photothermal combined gene therapy of triple-negative breast cancer (TNBC). The nano colloid was found to be nanometric as characterized by SEM, AFM, and zeta sizer (68.2 ± 2.1 nm; 13.8 ± 1.2 mV). The doxorubicin (Dox) loaded employing hydrophobic interaction/π-π stacking showed >80% entrapment efficiency with a sustained pH-dependent drug release profile. It can efficiently incorporate siRNA and Dox and successfully co-localize them inside TNBC cells to obtain significant anticancer activity as evaluated using CCK-8 assay, apoptosis assay, cell cycle analysis, cellular uptake, fluorescence assay, endosomal escape study, DNA content analysis, and gene silencing efficacy studies. nGC-CO-FA/Dox/siRNA released the Dox in temperature- and a pH-responsive manner following NIR-808 laser irradiation. The synergistic photo-chemo-gene therapy using near infrared-808 nm laser (NIR-808) irradiation was found to be more effective as compared to without NIR-808 laser-treated counterparts (∆T: 37 ± 1.1 °C → to 49.2 ± 3.1 °C; 10 min; 0.5 W/cm2), suggesting the pivotal role of photothermal combined gene-therapy in the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
23
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Karoon Kiani F, Mahmoud Salehi Khesht A, Izadi S, Rashidi B, Kermanpour S, Mokhtarian R, Karpisheh V, Hassannia H, Mohammadi H, Jalili A, Jadidi-Niaragh F. Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol 2021; 101:108288. [PMID: 34710844 DOI: 10.1016/j.intimp.2021.108288] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE T-cell immunoglobulin and ITIM domain (TIGIT) is an immune checkpoint that is overexpressed on both immune cells and some cancer cells. TIGIT can alter the anti-tumor responses inside the tumor microenvironment. Hypoxia-inducible factor 1-alpha (HIF-1α) plays a significant role in the TME and involves suppressing the anti-tumor responses. Under hypoxic conditions, HIF-1α can enhance the expression of different immune checkpoints. Accordingly, hypoxic TME and TIGIT overexpression cause cancer development. Thus, we decided to inhibit tumor cell expansion by inhibiting TIGIT and HIF-1α molecules and discovering the relationship between TIGIT and HIF-1α. METHODS In this research, we utilized superparamagnetic iron oxide-based NPs (SPIONs) combined with chitosan lactate (CL) and folic acid (FA) nanoparticles (NPs) loaded with TIGIT-siRNA and HIF-1α- siRNA for suppressing TIGIT and HIF-1α in tumor cells and evaluated the consequences of this treatment strategy on tumor growth, apoptosis, and metastasis. RESULTS The results showed that cancer cells treated with TIGIT and HIF-1α siRNA-loaded SPIONs-CL-FA NPs, strongly suppressed the TIGIT and HIF-1α expression, colony formation ability, angiogenesis, and the growth rate of cancer cells. CONCLUSIONS Present data suggest the combination treatment of TIGIT and HIF-1α as a novel treatment strategy against colorectal and breast cancer, but more researches are required to realize the complete role of TIGIT and HIF-1α inside the TME.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Simin Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Rasouli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kermanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Mokhtarian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Synthesis of methoxy poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers hybridized with DDAB cationic lipid as the efficient nanocarriers for in vitro delivery of lycopene into MCF-7 breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
27
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
28
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
29
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Salehi Khesht AM, Karpisheh V, Sahami Gilan P, Melnikova LA, Olegovna Zekiy A, Mohammadi M, Hojjat-Farsangi M, Majidi Zolbanin N, Mahmoodpoor A, Hassannia H, Aghebati-Maleki L, Jafari R, Jadidi-Niaragh F. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int J Biol Macromol 2021; 186:849-863. [PMID: 34245737 DOI: 10.1016/j.ijbiomac.2021.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/10/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy drugs are still one of the first treatment options used in many cancers; however, problems such as cytotoxic side effects on normal cells after systemic administration and resistance to treatment have reduced the use of chemotherapeutics day by day. Targeted delivery of these drugs to the tumor site and sensitization of cancer cells to death induced by chemotherapy drugs are ways that can overcome the limitations of the use of these drugs. In this study, we designed and generated a novel nanocarrier composed of chitosan lactate nanoparticles (NPs) functionalized by HIV-1 derived TAT peptide (Transactivating transcriptional activator) and hyaluronate (HA) to deliver CD73 siRNA and doxorubicin to 4T1 and CT26 cancer cells, both in vivo and in vitro, as a novel combinatorial treatment strategy. The CD73 molecule plays a key role in many cancer cell behaviors such as proliferation, angiogenesis, metastasis, imunosuppression, and resistance to chemotherapy. Therefore, we decided to reduce the side effects of DOX by simultaneously transmitting CD73 siRNA and DOX by CL-TAT-HA NPs, increase the susceptibility of cancer cells to DOX-induced cell death, and stimulate anti-tumor immune responses, for the first time. These results indicated that simultaneous transfer of CD73 siRNA and DOX to cancer cells (4 T1 and CT26) increased cell death and inhibited the prolifration and spread of cancer cells. Also, the preferential aggregation of NPs in the tumor microenvironment reduced tumor growh, promoted the survival of tumor-bearing mice, and induced anti-tumor immune responses. These findings indicate that CL-TAT-HA NPs are a good candidate for targeted siRNA/drug delivery to cancer cells and the simultaneous transfer of CD73 siRNA and DOX to cancer cells using this nanocarrier can be used to treat cancer.
Collapse
Affiliation(s)
- Armin Mahmoud Salehi Khesht
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sahami Gilan
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lyubov A Melnikova
- Finance University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahdis Mohammadi
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Jafari
- Solid Tumor Research Center, Cellular and Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Allahyari SE, Hajizadeh F, Zekiy AO, Mansouri N, Gilan PS, Mousavi SM, Masjedi A, Hassannia H, Ahmadi M, Mohammadi H, Yousefi M, Izadi S, Zolbanin NM, Jafari R, Jadidi-Niaragh F. Simultaneous inhibition of CD73 and IL-6 molecules by siRNA-loaded nanoparticles prevents the growth and spread of cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102384. [PMID: 33771704 DOI: 10.1016/j.nano.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 01/11/2023]
Abstract
High concentrations of adenosine and interleukin (IL)-6 in the tumor microenvironment have been identified as one of the leading causes of cancer growth. Thus, we decided to inhibit the growth of cancer cells by inhibiting the production of adenosine and IL-6 in the tumor environment at the same time. For this purpose, we used chitosan-lactate-PEG-TAT (CLP-TAT) nanoparticles (NPs) loaded with siRNA molecules against CD73, an adenosine-producing enzyme, and IL-6. Proper physicochemical properties of the produced NPs led to high cell uptake and suppression of target molecules. Administration of these NPs to tumor-bearing mice (4T1 and CT26 models) greatly reduced the size of the tumor and increased the survival of the mice, which was accompanied by an increase in anti-tumor T lymphocyte responses. These findings suggest that combination therapy using siRNA-loaded CLP-TAT NPs against CD73 and IL-6 molecules could be an effective treatment strategy against cancer that needs further study.
Collapse
Affiliation(s)
- Sima Emadi Allahyari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Niloofar Mansouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sahami Gilan
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Joshi N, Hajizadeh F, Ansari Dezfouli E, Zekiy AO, Nabi Afjadi M, Mousavi SM, Hojjat-Farsangi M, Karpisheh V, Mahmoodpoor A, Hassannia H, Dolati S, Mohammadi H, Yousefi M, Jadidi-Niaragh F. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sci 2021; 275:119369. [PMID: 33745894 DOI: 10.1016/j.lfs.2021.119369] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Despite extensive efforts to find new treatments, chemotherapy is still one of the first and foremost choices for cancer treatment. The main problems of using these drugs are the resistance of cancer cells and reducing their sensitivity to chemotherapy as well as the side effects of their systemic administration. Because STAT3 plays a very important role in the survival and susceptibility of cancer cells to apoptosis, we hypothesized that suppression of STAT3 expression could induce greater susceptibility to DOX-induced cancer cell death. MATERIALS AND METHODS We used pegylated chitosan lactate nanoparticles (NPs) functionalized by TAT peptide and folate to deliver STAT3 siRNA and DOX to cancer cells simultaneously, both in vitro and in vivo. KEY FINDINGS The results showed that NPs could effectively deliver siRNA and DOX to cancer cells, which was associated with suppression of STAT3 expression and increased induction of DOX-mediated cell death. Concomitant delivery of DOX and STAT3 siRNA also suppressed tumor growth in 4T1 and CT26 cancer models, which was associated with induction of anti-tumor immune responses. SIGNIFICANCE These findings suggest that the use of NPs can be an effective strategy for the targeted delivery of STAT3-specific siRNA/DOX to cancer cells.
Collapse
Affiliation(s)
- Navneet Joshi
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India.
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | | | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Chen L, Zhou X, Kong X, Su Z, Wang X, Li S, Luo A, Liu Z, Fang Y, Wang J. The Prognostic Significance of Anisomycin-Activated Phospho-c-Jun NH2-Terminal Kinase (p-JNK) in Predicting Breast Cancer Patients' Survival Time. Front Cell Dev Biol 2021; 9:656693. [PMID: 33768099 PMCID: PMC7985183 DOI: 10.3389/fcell.2021.656693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the prognostic significance of p-JNK in breast cancer patients receiving neoadjuvant chemotherapy (NACT) and analyze the relationship between anisomycin, p-JNK. A total of 104 breast cancer patients had NACT were enrolled in this study. The western blot and immunohistochemistry assays were used to determine the protein expressions of p-JNK in human breast cancer cell lines and patients’ cancer tissues. The chi-square test and Fisher’s exact test were adopted to gauge the associations between breast cancer and clinicopathological variables by p-JNK expression, whereas the univariate and multivariate Cox proportional hazards regression models were used to analyze the prognostic value of p-JNK expression. The Kaplan-Meier plots and the log-rank test were adopted to determine patients’ disease-free survival (DFS) and overall survival (OS). Findings indicated that the p-JNK expression had prognostic significance in univariate and multivariate Cox regression survival analyses. Results of log-rank methods showed that: (1) the mean DFS and OS times in patients with high p-JNK expression were significantly longer than those in patients with low p-JNK expression (χ2 = 5.908, P = 0.015 and χ2 = 6.593, P = 0.010, respectively). p-JNK expression is a significant prognostic factor that can effectively predict the survival in breast cancer patients receiving NACT. Treatment with the JNK agonist anisomycin can induce apoptosis, lead to increased p-JNK expression and decreased p-STAT3 expression. Moreover, the p-JNK expression was inversely correlated with p-STAT3 expression.
Collapse
Affiliation(s)
- Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio, TX, United States
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Budi HS, Izadi S, Timoshin A, Asl SH, Beyzai B, Ghaderpour A, Alian F, Eshaghi FS, Mousavi SM, Rafiee B, Nikkhoo A, Ahmadi A, Hassannia H, Ahmadi M, Sojoodi M, Jadidi-Niaragh F. Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT-chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102373. [PMID: 33667724 DOI: 10.1016/j.nano.2021.102373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
HIF-1α and STAT3 are two of the critical factors in the growth, proliferation, and metastasis of cancer cells and play a crucial role in inhibiting anti-cancer immune responses. Therefore, we used superparamagnetic iron oxide (SPION) nanoparticles (NPs) coated with thiolated chitosan (ChT) and trimethyl chitosan (TMC) and functionalized with hyaluronate (H) and TAT peptide for delivery of siRNA molecules against STAT3 and HIF-1α to cancer cells both in vivo and in vitro. The results indicated that tumor cell transfection with siRNA-encapsulated NPs robustly inhibited proliferation and migration and induced apoptosis in tumor cells. Furthermore, simultaneous silencing of HIF-1α and STAT3 significantly repressed cancer development in two different tumor types (4T1 breast cancer and CT26 colon cancer) which were associated with upregulation of cytotoxic T lymphocytes and IFN-γ secretion. The findings suggest inhibiting the HIF-1α/STAT3 axis by SPION-TMC-ChT-TAT-H NPs as an effective way to treat cancer.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anton Timoshin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of propaedeutics of dental diseases, Moscow, Russia
| | | | - Behzad Beyzai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaderpour
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Farzaneh Sadat Eshaghi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Afshin Nikkhoo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- iepartment of Chemical and Materials Engineering, The University of Alabama in Huntsville, AL, USA
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
36
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
37
|
Zhang W, Zhang Y, Zhou W, Qian F, Hu M, Chen Y, Lu J, Lou Y, Han B. PlGF knockdown attenuates hypoxia-induced stimulation of cell proliferation and glycolysis of lung adenocarcinoma through inhibiting Wnt/β-catenin pathway. Cancer Cell Int 2021; 21:18. [PMID: 33407494 PMCID: PMC7788771 DOI: 10.1186/s12935-020-01714-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Angiogenic placental growth factor (PlGF) plays a role in hypoxia-induced angiogenesis. Here, we aimed to investigate the biological roles of PlGF in cell proliferation and glycolysis of lung adenocarcinoma (LUAD) and the underlying molecular mechanisms. Methods PlGF was knocked down in H358 and H1975 cells by lentiviruses, which were then cultured under hypoxia (90% N2, 5%CO2 and 5%O2) for 24 h. PlGF was overexpressed in PC9 cells treated with XAV939, inhibitor of Wnt/β-catenin signaling pathway. PlGF-silencing H1975 cells were implanted into mice, and tumor xenografts were harvested and analyzed. Results Hypoxia treatment led to up-regulation of PlGF, C-myc, lactate dehydrogenase A (LDHA), and β-catenin, promotion of cell proliferation and glycolysis in H358 and H1975 cells, which were obviously reversed by knocking down PlGF. In tumors, PlGF knockdown significantly prohibited cell proliferation and glycolysis, and decreased expression of C-myc, LDHA, and β-catenin. PlGF overexpression markedly strengthened cell proliferation, which was inhibited by β-catenin knockdown. Consistently, XAV939, inhibitor of Wnt/β-catenin pathway, also inhibited PlGF-induced cell proliferation, glycolysis, and β-catenin expression in PC9 cells. Conclusion PlGF knockdown inhibited the stimulatory effect of hypoxia on cell proliferation and glycolysis of LUAD through deactivating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Wensheng Zhou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Fangfei Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Minjuan Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Ya Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
38
|
Bastaki S, Aravindhan S, Ahmadpour Saheb N, Afsari Kashani M, Evgenievich Dorofeev A, Karoon Kiani F, Jahandideh H, Beigi Dargani F, Aksoun M, Nikkhoo A, Masjedi A, Mahmoodpoor A, Ahmadi M, Dolati S, Namvar Aghdash S, Jadidi-Niaragh F. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sci 2020; 266:118847. [PMID: 33309720 DOI: 10.1016/j.lfs.2020.118847] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy methods using potential tumor microenvironment modulators have elicited durable therapeutic responses in cancer treatment. Immune checkpoint molecule programmed cell death-ligand 1 (PD-L1) and oncogenic transcription factor STAT3 (signal transducer and activator of transcription-3) assigned as inhibitory targets of our study and particular delivery system designed to deliver small interfering RNAs (siRNAs) to silence the targeted genes. Generated trimethyl chitosan (TMC) and thiolated chitosan (TC) nanoparticles (NPs) conjugated with HIV-1-derived TAT peptide and HA (hyaluronic acid) exhibited eligible physicochemical characteristics, notable siRNA encapsulation, serum stability, non-toxicity, controlled siRNA release, and extensive cellular uptake by cancer cells. Dual inhibition with STAT3/PD-L1 siRNA-loaded HA-TAT-TMC-TC NPs led to promising results, including significant downregulation of PD-L1 and STAT3 genes, striking suppressive effects on proliferation, migration, and angiogenesis of breast and melanoma cancer cell lines, and restrained tumor growth in vivo. These findings infer the capability of HA-TAT-TMC-TC NPs containing STAT3/PD-L1 siRNAs as a novel tumor-suppressive candidate in cancer treatment.
Collapse
Affiliation(s)
- Shima Bastaki
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Surendar Aravindhan
- Department of Electronics and Communication Engineering, AL-AMEEN ENGINEERING COLLEGE (Autonomous), Erode, Tamilnadu 638104, India.
| | | | | | | | - Fariba Karoon Kiani
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hediyeh Jahandideh
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Aksoun
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Masjedi
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|