1
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
2
|
Ballard JE, Pall PS, Vardigan J, Zhao F, Holahan MA, Zhou X, Jochnowitz N, Kraus RL, Klein RM, Henze DA, Houghton AK, Burgey CS, Gibson C, Struyk A. Translational Pharmacokinetic–Pharmacodynamic Modeling of NaV1.7 Inhibitor MK-2075 to Inform Human Efficacious Dose. Front Pharmacol 2021; 12:786078. [PMID: 35002718 PMCID: PMC8740778 DOI: 10.3389/fphar.2021.786078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation. Analgesics used as a standard of care in postoperative pain were evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic (PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075 was evaluated in those same animal models to determine the concentration of MK-2075 required to achieve the desired level of response. Translation of MK-2075 efficacious concentrations in preclinical animal models to a clinical PKPD target in humans was achieved by accounting for species differences in plasma protein binding and in vitro potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK) parameters were obtained from allometric scaling of a PK model from preclinical species and used to predict the dose required to achieve the clinical exposure. MK-2075 exposure–response in a preclinical target modulation assay (rhesus olfaction) was characterized using a computational PKPD model which included a biophase compartment to account for the observed hysteresis. Translation of this model to humans was accomplished by correcting for species differences in PK NaV1.7 potency, and plasma protein binding while assuming that the kinetics of distribution to the target site is the same between humans and rhesus monkeys. This enabled prediction of the level of target modulation anticipated to be achieved over the dosing interval at the projected clinical efficacious human dose. Integration of these efforts into the early development plan informed clinical study design and decision criteria.
Collapse
Affiliation(s)
- Jeanine E. Ballard
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, United States
- *Correspondence: Jeanine E. Ballard,
| | - Parul S. Pall
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Joshua Vardigan
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Fuqiang Zhao
- Translational Imaging Biomarkers, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Marie A. Holahan
- Translational Imaging Biomarkers, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Xiaoping Zhou
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Nina Jochnowitz
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Richard L. Kraus
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Rebecca M. Klein
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Darrell A. Henze
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Andrea K. Houghton
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | | | - Christopher Gibson
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Arie Struyk
- Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
3
|
Roecker AJ, Layton ME, Pero JE, Kelly MJ, Greshock TJ, Kraus RL, Li Y, Klein R, Clements M, Daley C, Jovanovska A, Ballard JE, Wang D, Zhao F, Brunskill APJ, Peng X, Wang X, Sun H, Houghton AK, Burgey CS. Discovery of Arylsulfonamide Na v1.7 Inhibitors: IVIVC, MPO Methods, and Optimization of Selectivity Profile. ACS Med Chem Lett 2021; 12:1038-1049. [PMID: 34141090 PMCID: PMC8201757 DOI: 10.1021/acsmedchemlett.1c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
The voltage-gated sodium channel Nav1.7 continues to be a high-profile target for the treatment of various pain afflictions due to its strong human genetic validation. While isoform selective molecules have been discovered and advanced into the clinic, to date, this target has yet to bear fruit in the form of marketed therapeutics for the treatment of pain. Lead optimization efforts over the past decade have focused on selectivity over Nav1.5 due to its link to cardiac side effects as well as the translation of preclinical efficacy to man. Inhibition of Nav1.6 was recently reported to yield potential respiratory side effects preclinically, and this finding necessitated a modified target selectivity profile. Herein, we report the continued optimization of a novel series of arylsulfonamide Nav1.7 inhibitors to afford improved selectivity over Nav1.6 while maintaining rodent oral bioavailability through the use of a novel multiparameter optimization (MPO) paradigm. We also report in vitro-in vivo correlations from Nav1.7 electrophysiology protocols to preclinical models of efficacy to assist in projecting clinical doses. These efforts produced inhibitors such as compound 19 with potency against Nav1.7, selectivity over Nav1.5 and Nav1.6, and efficacy in behavioral models of pain in rodents as well as inhibition of rhesus olfactory response indicative of target modulation.
Collapse
Affiliation(s)
- Anthony J. Roecker
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mark E. Layton
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph E. Pero
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Michael J. Kelly
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Thomas J. Greshock
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L. Kraus
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yuxing Li
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rebecca Klein
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Michelle Clements
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher Daley
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Aneta Jovanovska
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeanine E. Ballard
- Pharmacokinetic,
Pharmacodynamics, and Drug Metabolism, Merck
& Co., Inc., West Point, Pennsylvania 19486, United States
| | - Deping Wang
- Computational
and Structural Chemistry, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Fuqiang Zhao
- Translational
Imaging and Biomarkers, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Andrew P. J. Brunskill
- Molecular
and Materials Characterization, Merck &
Co., Inc., Rahway, New Jersey 07065, United States
| | - Xuanjia Peng
- HitS
Unite, WuXi AppTec Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Xiu Wang
- IDSU, WuXi AppTec
Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Haiyan Sun
- IDSU, WuXi AppTec
Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Andrea K. Houghton
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher S. Burgey
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|