1
|
Willis LF, Trayton I, Saunders JC, Brùque MG, Davis Birch W, Westhead DR, Day K, Bond NJ, Devine PWA, Lloyd C, Kapur N, Radford SE, Darton NJ, Brockwell DJ. Rationalizing mAb Candidate Screening Using a Single Holistic Developability Parameter. Mol Pharm 2025; 22:181-195. [PMID: 39681988 PMCID: PMC11707744 DOI: 10.1021/acs.molpharmaceut.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
A framework for the rational selection of a minimal suite of nondegenerate developability assays (DAs) that maximize insight into candidate developability or storage stability is lacking. To address this, we subjected nine formulation:mAbs to 12 mechanistically distinct DAs together with measurement of their accelerated and long-term storage stability. We show that it is possible to identify a reduced set of key variables from this suite of DAs by using orthogonal statistical methods. We exemplify our approach by predicting the rank formulation:mAb degradation rate at 25 °C (determined over 6 months) using just five DAs that can be measured in less than 1 day, spanning a range of physicochemical features. Implementing such approaches focuses on resources, thus increasing sustainability and decreasing development costs.
Collapse
Affiliation(s)
- Leon F. Willis
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | | | | | - Maria G. Brùque
- The
Discovery Centre—AstraZeneca PLC, Cambridge CB2 0AA, U.K.
| | - William Davis Birch
- School
of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - David R. Westhead
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Katie Day
- The
Discovery Centre—AstraZeneca PLC, Cambridge CB2 0AA, U.K.
| | | | | | | | - Nikil Kapur
- School
of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sheena E. Radford
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - David J. Brockwell
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Rembert KB, Gokarn YR, Saluja A. Designing Robust Monoclonal Antibody Drug Products: Pitfalls of Simplistic Approaches for Stability Prediction. J Pharm Sci 2024; 113:2296-2304. [PMID: 38556000 DOI: 10.1016/j.xphs.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Thermal stability attributes including unfolding onset (Tonset) and mid-point (Tm) are often utilized for efficient development of monoclonal antibody (mAb) products during lead selection and formulation screening workflows. An assumption of direct correlation between thermal and kinetic physical stability underpins this basic approach. While literature reports have substantiated this general approach under specific conditions, clear exceptions have been highlighted alongside. Herein, a set of mAbs formulated under diverse solution conditions to generate a broad array of thermal and kinetic stability profiles were systematically analyzed. Sequence modifications in the Fc region were purposefully engineered to generate a set of low-melting mAbs. A diverse set of excipients were subsequently utilized and shown to modulate the Tm over a wide range. While a general correlation between high Tm and low aggregation rate was observed under accelerated conditions, the predictive utility of Tm under relevant product storage conditions was inadequate at best. Critically, Tm data did not correlate with long-term aggregation rates under refrigerated or room temperature conditions. Even under accelerated conditions, Tm appeared to be a poor predictor of aggregation once it exceeded the solution storage temperature (40°C) by ∼15°C, similar to conditions routinely encountered in the development of canonical mAbs (Tm > 60°C). Pitfalls of simplistic correlative approaches are discussed in the context of practical biologics product development.
Collapse
Affiliation(s)
- Kelvin B Rembert
- Biologics Drug Product Development & Manufacturing, Global CMC, Sanofi, One Mountain Road, Framingham, MA 01701, USA
| | - Yatin R Gokarn
- Biologics Drug Product Development & Manufacturing, Global CMC, Sanofi, One Mountain Road, Framingham, MA 01701, USA
| | - Atul Saluja
- Biologics Drug Product Development & Manufacturing, Global CMC, Sanofi, One Mountain Road, Framingham, MA 01701, USA.
| |
Collapse
|
4
|
Carrillo RJ, Semple A. DSC Derived (Ea & ΔG) Energetics and Aggregation Predictions for mAbs. J Pharm Sci 2024; 113:2140-2150. [PMID: 38761862 DOI: 10.1016/j.xphs.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The Arrhenius energy of activation of unfolding Ea unfolding and Gibbs free energy of unfolding ΔG unfolding have been calculated utilizing DSC differential scanning calorimetry for 4 mAbs (1 biosimilar) in 3 formulations. DSC derived ΔTm melting temperature changes for each mAb domain (CH2, Fab, CH3) at calorimetric scan rates at 60 °C, 90 °C, 150 °C and 200 °C / hr. were utilized to calculate the kinetic Eaunfolding. The DSC derived Ea trend with observed aggregate formation and can be used to predict%HMW formation post 9-month storage at 5 °C and 40 °C for all formulations analyzed. Additionally, thermodynamic ΔG unfolding energies were also derived (Tm, ΔCp and ΔH measurements) for each mAb at every scan rate to observe scan rate dependence of ΔG and for extrapolation to 0 °C/hr. (to report ΔG at true equilibrium conditions). Both derived thermodynamic ΔG and kinetic Ea energies were combined to build full energetic landscapes for mAb unfolding and aggregation. Statistical multivariate analysis of kinetic (Ea CH2, Ea Fab, Ea CH3) energies, thermodynamic (ΔG5 °C and ΔG40 °C) energies and in-silico modeled surface properties was also performed. Analysis revealed key significant parameters contributing to aggregation. These parameters were utilized to build predictive aggregation models for 25 mg/mL mAb formulations stored 9-months at 5 °C and 40 °C.
Collapse
Affiliation(s)
- Ralf J Carrillo
- Merck & Co., Inc., Pharmaceutical Sciences, Research Pharmacy, SSP Sterile Specialty Products, Kenilworth N.J., USA.
| | - Andy Semple
- Merck & Co., Inc., Pharmaceutical Sciences, Biologics AR&D, Kenilworth N.J., USA
| |
Collapse
|
5
|
Cook KD, Tran T, Thomas VA, Devanaboyina SC, Rock DA, Pearson JT. Correlation of In Vitro Kinetic Stability to Preclinical In Vivo Pharmacokinetics for a Panel of Anti-PD-1 Monoclonal Antibody Interleukin 21 Mutein Immunocytokines. Drug Metab Dispos 2024; 52:228-235. [PMID: 38135505 DOI: 10.1124/dmd.123.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.
Collapse
Affiliation(s)
- Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Thuy Tran
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Veena A Thomas
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | | | - Dan A Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Josh T Pearson
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| |
Collapse
|
6
|
Prass TM, Garidel P, Schäfer LV, Blech M. Residue-resolved insights into the stabilization of therapeutic proteins by excipients: A case study of two monoclonal antibodies with arginine and glutamate. MAbs 2024; 16:2427771. [PMID: 39540607 PMCID: PMC11572152 DOI: 10.1080/19420862.2024.2427771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Protein formulation development relies on the selection of excipients that inhibit protein-protein interactions preventing aggregation. Empirical strategies involve screening many excipient and buffer combinations by physicochemical characterization using forced degradation or temperature-induced stress, mostly under accelerated conditions. Such methods do not readily provide information on the inter- and intramolecular interactions responsible for the effects of excipients. Here, we describe a combined experimental and computational approach for investigating the effect of protein-excipient interactions on formulation stability, which allows the identification of preferential interaction sites and thus can aid in the selection of excipients to be experimentally screened. Model systems composed of two marketed therapeutic IgG1 monoclonal antibodies with identical Fc domain sequences, trastuzumab and omalizumab, were investigated with commonly used excipients arginine, glutamate, and equimolar arginine/glutamate mixtures. Protein-excipient interactions were studied using all-atom molecular dynamics (MD) simulations, which show accumulation of the excipients at specific antibody regions. Preferential excipient-interaction sites were particularly found for charged and aromatic residues and in the complementary-determining regions, with more pronounced arginine contacts for omalizumab than trastuzumab. These computational findings are in line with the more pronounced stabilizing effects of arginine observed in the long-term storage stability study. Furthermore, the aggregation and solubility propensity predicted by commonly used in silico tools do not align with the preferential excipient-interaction sites identified by the MD simulations, suggesting that different physicochemical mechanisms are at play.
Collapse
Affiliation(s)
- Tobias M. Prass
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biberach and der Riss, Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Michaela Blech
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biberach and der Riss, Germany
| |
Collapse
|