1
|
Zheng Y, Sun K, Sun X, Li Y, Xiao P, He C. Quality differences in sea buckthorn (Hippophaë rhamnoides L.) berries of major varieties in China based on key components and antioxidant activity. Food Chem 2025; 465:142139. [PMID: 39571424 DOI: 10.1016/j.foodchem.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Sea buckthorn is rich in active ingredients, widespread, and has both medicinal and nutritional value. The present comparative study of wild and cultivated species remains insufficient, which is not conducive to their quality control. Therefore, this study aimed to compare the differences of 21 sea buckthorn samples in total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, secondary metabolites, and antioxidant capacity and the fatty acid, to investigate the quality differences of different varieties. The TPC, TFC and antioxidant activity of wild varieties were higher than those of the cultivated. Multivariate statistical analysis revealed large differences in phenolic content, with higher levels of gallic acid and isorhamnetin-3-O-neohesperidin in the wild, whereas the cultivated were characterized by narcissin and kaempferol. These findings provided the scientific basis for the improvement of quality evaluation standards for different varieties and offered new insights for the further development of sea buckthorn resources.
Collapse
Affiliation(s)
- Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kangmeng Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyuan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Z, Chen Y, Chen Z, Gao Z, Cheng Y, Qu K. Quality analysis and assessment of representative sea buckthorn fruits in northern China. Food Chem X 2024; 24:101828. [PMID: 39319099 PMCID: PMC11421254 DOI: 10.1016/j.fochx.2024.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Sea buckthorn (SB) primarily grows in northern China and is rich in nutritional components, making it popular among consumers. This study aims to select suitable SB varieties for processing by analyzing physicochemical components, color, taste, and volatile compounds. The results showed that the physicochemical content of Chinese SB from Gansu were as follows: total soluble solids 13.50 ± 0.37°Brix, titratable acidity 6.46 ± 0.39 %, ascorbic acid 578 mg/100 g, polyphenols 517 mg/100 g, and flavonoids 194 mg/100 g, which were higher than those of the other four SB samples; the content of organic acids was relatively abundant. Taste analysis via electronic tongue indicated that Chinese SB had the highest ANS (sweetness) value and the lowest SCS (bitterness) value, exhibiting the richest flavor. Gas chromatography-mass spectrometry analysis showed that Gansu Chinese SB had a rich variety of volatile components, totaling 74. In summary, Gansu Chinese SB is a variety suitable for processing.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yixuan Chen
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Zhixi Chen
- Huachi Gannong Biotechnology Company Limited, Qingyang, China
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuying Cheng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
3
|
Ren L, Wang R, Wang Y, Tie F, Dong Q, Wang H, Hu N. Exploring the effect and mechanism of Hippophae rhamnoides L. triterpenoid acids on improving NAFLD based on network pharmacology and experimental validation in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118657. [PMID: 39127115 DOI: 10.1016/j.jep.2024.118657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) is a traditional Chinese medicinal and possesses a rich medical history in terms of treating gastric disorders, sputum and cough and liver injuries in oriental medicinal system. By reason of the complicated chemical constituents, the material basis and potential pharmacological mechanism of sea buckthorn acting on Non-alcoholic fatty liver disease (NAFLD) has not been clearly elucidated. AIM OF THE STUDY To explore the pharmacological efficacy and underlying mechanism of sea buckthorn triterpenoid acid enrichment (STE) in the treatment of NAFLD. MATERIALS AND METHODS The approaches of Network pharmacology and experiment validation in vitro and in vivo were applied in this study. Firstly, targets of triterpenoid acid compounds and NAFLD were collected from databases. The crucial targets were screened by the construction of protein-protein interaction (PPI) network. Furthermore, the potential signaling pathways and targets affected by STE was predicted by GO together with KEGG enrichment analysis. Finally, the experiment validation was carried out through high-fat feeding NAFLD mice and lipid accumulation HepG2 cell model. Lipids and liver related biochemical indicators were determined, Oil Red O and H&E staining were employed to observe fat accumulation. In addition, the expression levels of proteins of key target and signal pathway anticipated in network pharmacology were detected to elaborated its action mechanism. RESULTS A total of 180 intersecting potential targets for enhancing NAFLD with STE were eventually identified. 6 key targets including AKT1, TNF, IL6, INS, JUN, STAT3 and TP53 were further identified and the AMPK-SREBP1 pathway was enriched. Animal experiment result showed that STE treatment could significantly reduce the levels of TG, TC, LDL-C, ALT and AST, increase the levels of HDL-C in serum, and improve lipid accumulation of epididymal fat and liver. The results of the lipid accumulation cell model indicated that STE and key compound oleanolic acid could diminish intracellular lipid levels of TG, TC, LDL-C and number of lipid droplets. Western blot results showed that the above beneficial effects could be achieved by regulating the expression of p-AMPK/AMPK, SREBP1, FAS, ACC, SCD protein. CONCLUSION This study confirmed the effect of STE on improving NAFLD and the potential action mechanism was involved in the regulation of the AMPK-SREBP1 pathway.
Collapse
Affiliation(s)
- Lichengcheng Ren
- School of Medicine, Qinghai University, Xining, Qinghai, 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Ruinan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Yue Wang
- School of Medicine, Qinghai University, Xining, Qinghai, 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Fangfang Tie
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, 810008, Xining, China.
| |
Collapse
|
4
|
Du Z, Bai H, Liu M, Liu Y, Zhu G, Chai G, He Y, Shi J, Duan Y. Response of ecological stoichiometry and homeostasis characteristic to nitrogen addition in Hippophae rhamnoides L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175591. [PMID: 39173774 DOI: 10.1016/j.scitotenv.2024.175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Nitrogen (N) in the atmosphere frequently affects plant growth, ecological stoichiometric equilibrium, and homeostasis stability. However, the effect of N addition application on the growth of Hippophae rhamnoides seedlings remains ambiguous. We investigated the effects of N addition on the ecological stoichiometry and homeostatic characteristics of H. rhamnoides seedlings. Greenhouse cultivation experiments were conducted at five N application levels: 0 kg ha-1 yr-1(CK), 100 kg ha-1 yr-1 (N10), 200 kg ha-1 yr-1 (N20), 400 kg ha-1 yr-1 (N40), 800 kg ha-1 yr-1 (N80). The results showed that pH and available phosphorus (AP) significantly decreased with increasing N, whereas soil C:P and N:P ratios significantly increased under the N40 and N80 treatments. The leaf C:N ratio significantly decreased with increasing N, whereas the N:P ratio increased. With N addition, the C:N ratio of plant stems and roots significantly decreased, whereas the C:P and N:P ratios significantly increased. N addition was significantly correlated with the ecological stoichiometry of plant leaves and soil properties (0.38 and 0.84, respectively). Homeostasis of the organs of H. rhamnoides seedlings exhibited an absolute steady state. The C, N, and C:P ratios of the roots exhibited insensitive states under the N40 treatment. N addition significantly modified both the soil ecological stoichiometry and the stoichiometry of H. rhamnoides seedlings. However, it did not demonstrate a pronounced negative effect on the homeostasis of H. rhamnoides seedlings. This study offers new insights into the ecological adaptation process of H. rhamnoides, particularly concerning its nutrient distribution, utilization strategies, and stability.
Collapse
Affiliation(s)
- Zhongyu Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huihui Bai
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Mili Liu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yang Liu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Guodong Zhu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Guaiqiang Chai
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yiming He
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Jianguo Shi
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yizhong Duan
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China.
| |
Collapse
|
5
|
Zhang Y, Zhang K, Bao Z, Hao J, Ma X, Jia C, Liu M, Wei D, Yang S, Qin J. A Novel Preservative Film with a Pleated Surface Structure and Dual Bioactivity Properties for Application in Strawberry Preservation due to Its Efficient Apoptosis of Pathogenic Fungal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18027-18044. [PMID: 39078084 DOI: 10.1021/acs.jafc.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 μL/mL (0.37 mg/mL) and 10 μL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) μg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.
Collapse
Affiliation(s)
- Yanxin Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Kehan Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhenyan Bao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jianan Hao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaoyun Ma
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Dongsheng Wei
- Department of Biology, Institute of Wood Science, University of Hamburg, Hamburg 21031, Germany
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianchun Qin
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
- Shenzhen Research Institute of Jilin University, Shenzhen 518066, China
| |
Collapse
|
6
|
Nicolescu A, Babotă M, Aranda Cañada E, Inês Dias M, Añibarro-Ortega M, Cornea-Cipcigan M, Tanase C, Radu Sisea C, Mocan A, Barros L, Crișan G. Association of enzymatic and optimized ultrasound-assisted aqueous extraction of flavonoid glycosides from dried Hippophae rhamnoides L. (Sea Buckthorn) berries. ULTRASONICS SONOCHEMISTRY 2024; 108:106955. [PMID: 38909597 PMCID: PMC11253688 DOI: 10.1016/j.ultsonch.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The main purpose of the present study was to determine the effect of associating an optimized ultrasound-assisted extraction (UAE) protocol with enzyme-assisted extraction (EAE) in aqueous media, using the dried berries of Hippophae rhamnoides L. (sea buckthorn) as plant material. A specialized software was used for the determination of potential optimal extraction parameters, leading to the development of four optimized extracts with different characteristics (UAE ± EAE). For these extracts, buffered or non-buffered solutions have been used, with the aim to determine the influence of adjustable pH on extractability. As enzymatic solution, a pectinase, cellulase, and hemicellulase mix (2:1:1) has been applied, acting as pre-treatment for the optimized protocol. The highest extractive yields have been identified for non-buffered extracts, and the E-UAE combination obtained extracts with the highest overall in vitro antioxidant activity. The HPLC-MSn analysis demonstrated a rich composition in different types of isorhamnetin-O-glycosides, as well as some quercetin-O-glycosides, showing a high recovery of specific flavonol-type polyphenolic species. Moreover, we have tentatively identified two flavanols (i.e., catechin and epigallocatechin) and one flavone derivative (i.e., luteolin).
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | | | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Cristian Radu Sisea
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Wu D, Yang Z, Li J, Huang H, Xia Q, Ye X, Liu D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn ( Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024; 13:482. [PMID: 38338617 PMCID: PMC10855374 DOI: 10.3390/foods13030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 μg/g), epigallocatechin (105.49 ± 0.69 μg/g), and protocatechuic acid (27.9 ± 2.38 μg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Zhihao Yang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Jiong Li
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| |
Collapse
|
8
|
Raclariu-Manolică AC, Socaciu C. In Search of Authenticity Biomarkers in Food Supplements Containing Sea Buckthorn: A Metabolomics Approach. Foods 2023; 12:4493. [PMID: 38137297 PMCID: PMC10742966 DOI: 10.3390/foods12244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) (SB) is increasingly consumed worldwide as a food and food supplement. The remarkable richness in biologically active phytochemicals (polyphenols, carotenoids, sterols, vitamins) is responsible for its purported nutritional and health-promoting effects. Despite the considerable interest and high market demand for SB-based supplements, a limited number of studies report on the authentication of such commercially available products. Herein, untargeted metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC-QTOF-ESI+MS) were able to compare the phytochemical fingerprint of leaves, berries, and various categories of SB-berry herbal supplements (teas, capsules, tablets, liquids). By untargeted metabolomics, a multivariate discrimination analysis and a univariate approach (t-test and ANOVA) showed some putative authentication biomarkers for berries, e.g., xylitol, violaxanthin, tryptophan, quinic acid, quercetin-3-rutinoside. Significant dominant molecules were found for leaves: luteolin-5-glucoside, arginine, isorhamnetin 3-rutinoside, serotonin, and tocopherol. The univariate analysis showed discriminations between the different classes of food supplements using similar algorithms. Finally, eight molecules were selected and considered significant putative authentication biomarkers. Further studies will be focused on quantitative evaluation.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Al Ibrahim M, Akissi ZLE, Desmarets L, Lefèvre G, Samaillie J, Raczkiewicz I, Sahpaz S, Dubuisson J, Belouzard S, Rivière C, Séron K. Discovery of Anti-Coronavirus Cinnamoyl Triterpenoids Isolated from Hippophae rhamnoides during a Screening of Halophytes from the North Sea and Channel Coasts in Northern France. Int J Mol Sci 2023; 24:16617. [PMID: 38068938 PMCID: PMC10705938 DOI: 10.3390/ijms242316617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3β-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3β-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.
Collapse
Affiliation(s)
- Malak Al Ibrahim
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Zachee Louis Evariste Akissi
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Lowiese Desmarets
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Jennifer Samaillie
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Imelda Raczkiewicz
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Jean Dubuisson
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Sandrine Belouzard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Karin Séron
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| |
Collapse
|
10
|
Qiu S, Zorig A, Sato N, Yanagihara A, Kanazawa T, Takasugi M, Arai H. Effect of Polyphenols in Sea Buckthorn Berry on Chemical Mediator Release from Mast Cells. Prev Nutr Food Sci 2023; 28:335-346. [PMID: 37842252 PMCID: PMC10567591 DOI: 10.3746/pnf.2023.28.3.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a deciduous shrub of the Elaeagnaceae family and is widely distributed in northern Eurasia. Sea buckthorn berry (SBB) has attracted attention for its use in many health foods, although its physiological function remains unknown. In this study, we investigated the inhibitory effect of SBB extract and its fractions on Type-I allergy using mast cell lines. Among these fractions, SBB fraction with the highest amount of antioxidant polyphenols significantly inhibited the release of chemical mediators such as histamine and leukotriene B4 (LTB4) from the stimulated mast cells. This fraction also inhibited the influx of calcium ions (Ca2+) and the phosphorylation of tyrosine residues in proteins, including spleen tyrosine kinase, which is associated with signal transduction during the release of chemical mediators. The active SBB fraction contained isorhamnetin as its major flavonol aglycon. Isorhamnetin inhibited histamine and LTB4 release from the stimulated cells and suppressed intracellular Ca2+ influx. These results indicate that isorhamnetin is the primary substance responsible for the antiallergic activity in SBB. In conclusion, SBB may alleviate Type-I allergy by inhibiting the release of chemical mediators from mast cells, and polyphenols may contribute to this effect.
Collapse
Affiliation(s)
- Shiman Qiu
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Anuu Zorig
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Naoko Sato
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Ai Yanagihara
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Tsutomu Kanazawa
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Mikako Takasugi
- Department of Life Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| |
Collapse
|
11
|
Puzeryte V, Martusevice P, Sousa S, Balciunaitiene A, Viskelis J, Gomes AM, Viskelis P, Cesoniene L, Urbonaviciene D. Optimization of Enzyme-Assisted Extraction of Bioactive Compounds from Sea Buckthorn ( Hippophae rhamnoides L.) Leaves: Evaluation of Mixed-Culture Fermentation. Microorganisms 2023; 11:2180. [PMID: 37764024 PMCID: PMC10536544 DOI: 10.3390/microorganisms11092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.
Collapse
Affiliation(s)
- Viktorija Puzeryte
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| |
Collapse
|
12
|
Geng Z, Li M, Zhu L, Zhang X, Zhu H, Yang X, Yu X, Zhang Q, Hu B. Design and Experiment of Combined Infrared and Hot-Air Dryer Based on Temperature and Humidity Control with Sea Buckthorn ( Hippophae rhamnoides L.). Foods 2023; 12:2299. [PMID: 37372510 DOI: 10.3390/foods12122299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A drying device based on infrared radiation heating technology combined with temperature and humidity process control technology was created to increase the drying effectiveness and quality of sea buckthorn. Based on the conventional k-turbulence model, the velocity field in the air distribution chamber was simulated using COMSOL 6.0 software. The airflow of the drying medium in the air distribution chamber was investigated, and the accuracy of the model was verified. Given that the inlet of each drying layer in the original model had a different velocity, the velocity flow field was improved by including a semi-cylindrical spoiler. The results showed that installation of the spoiler improved the homogeneity of the flow field for various air intakes, as the highest velocity deviation ratio dropped from 26.68% to 0.88%. We found that sea buckthorn dried more rapidly after being humidified, reducing the drying time by 7.18% and increasing the effective diffusion coefficient from 1.12 × 10-8 to 1.23 × 10-8 m2/s. The L*, rehydration ratio, and vitamin C retention rate were greater after drying with humidification. By presenting this hot-air drying model as a potential high-efficiency and high-quality preservation technology for sea buckthorn, we hope to advance the development of research in the sea buckthorn drying sector.
Collapse
Affiliation(s)
- Zhihua Geng
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Mengqing Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Lichun Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiaoqiang Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Hongbo Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xuhai Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xianlong Yu
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
| | - Bin Hu
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
13
|
Chen Y, Cai Y, Wang K, Wang Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023; 12:foods12101985. [PMID: 37238803 DOI: 10.3390/foods12101985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides L.) is a plant that has long been used as a Chinese herbal medicine. This species is known to contain numerous bioactive components, including polyphenols, fatty acids, vitamins, and phytosterols, which may be responsible for its medicinal value. In experiments both in vitro and in vivo (ranging from cell lines to animal models and human patients), sea buckthorn has shown positive effects on symptoms of metabolic syndrome; evidence suggests that sea buckthorn treatment can decrease blood lipid content, blood pressure, and blood sugar levels, and regulate key metabolites. This article reviews the main bioactive compounds present in sea buckthorn and discusses their efficacy in treating metabolic syndrome. Specifically, we highlight bioactive compounds isolated from distinct sea buckthorn tissues; their effects on abdominal obesity, hypertension, hyperglycemia, and dyslipidemia; and their potential mechanisms of action in clinical applications. This review provides key insight into the benefits of sea buckthorn, promoting future research of this species and expansion of sea buckthorn-based therapies for metabolic syndrome.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| |
Collapse
|
14
|
Skowrońska W, Bazylko A. The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn-A Review. Pharmaceutics 2023; 15:pharmaceutics15020633. [PMID: 36839954 PMCID: PMC9958865 DOI: 10.3390/pharmaceutics15020633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Treating burns remains a challenge for modern medicine, especially in developing countries that cannot afford expensive, advanced therapies. This review article summarises clinical and animal model studies of botanical preparations and their mixtures in treating burn wounds and sunburn. Articles available in electronic databases such as PubMed, Scopus, Web of Science, Science Direct and Google Scholar, published in English in 2010-2022, were considered. In the described clinical trials, it was shown that some herbal preparations have better effectiveness in treating burn wounds, including shortening the healing time and reducing inflammation, than the conventional treatment used hitherto. These herbal preparations contained extracts from Albizia julibrissin, Alkanna tinctoria, Aloe vera, Arnebia euchroma, Betula pendula and Betula pubescens, Centella asiatica, Hippophaë rhamnoides, Juglans regia, Lawsonia inermis, and mixtures of Matricaria chamomilla and Rosa canina. Research on animal models shows that many extracts may potentially benefit the treatment of burn wounds and sunburn. Due to the diverse mechanism of action, antibacterial activity, the safety of use and cost-effectiveness, herbal preparations can compete with conventional treatment. The growing interest in alternative medicine and herbal medicine encourages further research. Not only single preparations but also their mixtures should be taken into account because the research conducted so far often suggests a synergistic effect of the ingredients.
Collapse
|