1
|
Daly AF, Beckers A. The Genetic Pathophysiology and Clinical Management of the TADopathy, X-Linked Acrogigantism. Endocr Rev 2024; 45:737-754. [PMID: 38696651 DOI: 10.1210/endrev/bnae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Pituitary gigantism is a rare manifestation of chronic growth hormone (GH) excess that begins before closure of the growth plates. Nearly half of patients with pituitary gigantism have an identifiable genetic cause. X-linked acrogigantism (X-LAG; 10% of pituitary gigantism) typically begins during infancy and can lead to the tallest individuals described. In the 10 years since its discovery, about 40 patients have been identified. Patients with X-LAG usually develop mixed GH and prolactin macroadenomas with occasional hyperplasia that secrete copious amounts of GH, and frequently prolactin. Circulating GH-releasing hormone is also elevated in a proportion of patients. X-LAG is caused by constitutive or sporadic mosaic duplications at chromosome Xq26.3 that disrupt the normal chromatin architecture of a topologically associating domain (TAD) around the orphan G-protein-coupled receptor, GPR101. This leads to the formation of a neo-TAD in which GPR101 overexpression is driven by ectopic enhancers ("TADopathy"). X-LAG has been seen in 3 families due to transmission of the duplication from affected mothers to sons. GPR101 is a constitutively active receptor with an unknown natural ligand that signals via multiple G proteins and protein kinases A and C to promote GH/prolactin hypersecretion. Treatment of X-LAG is challenging due to the young patient population and resistance to somatostatin analogs; the GH receptor antagonist pegvisomant is often an effective option. GH, insulin-like growth factor 1, and prolactin hypersecretion and physical overgrowth can be controlled before definitive adult gigantism occurs, often at the cost of permanent hypopituitarism.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
2
|
Balinisteanu I, Caba L, Florea A, Popescu R, Florea L, Ungureanu MC, Leustean L, Gorduza EV, Preda C. Unlocking the Genetic Secrets of Acromegaly: Exploring the Role of Genetics in a Rare Disorder. Curr Issues Mol Biol 2024; 46:9093-9121. [PMID: 39194755 DOI: 10.3390/cimb46080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Acromegaly is a rare endocrine disorder characterized by the excessive production of growth hormone (GH) in adulthood. Currently, it is understood that certain pituitary neuroendocrine tumors (PitNETs) exhibit a hereditary predisposition. These tumors' genetic patterns fall into two categories: isolated and syndromic tumors. The isolated forms are characterized by molecular defects that predispose exclusively to PitNETs, including familial isolated pituitary adenomas (FIPAs) and sporadic genetic defects not characterized by hereditary predisposition. All the categories involve either germline or somatic mutations, or both, each associated with varying levels of penetrance and different phenotypes. This highlights the importance of genetic testing and the need for a more comprehensive view of the whole disease. Despite the availability of multiple treatment options, diagnosis often occurs after several years, and management is still difficult. Early detection and intervention are crucial for preventing complications and enhancing the quality of life for affected individuals. This review aims to elucidate the molecular, clinical, and histological characteristics of GH-secreting PitNETs, providing insights into their prevalence, treatment nuances, and the benefits of genetic testing for each type of genetic disorder associated with acromegaly.
Collapse
Affiliation(s)
- Ioana Balinisteanu
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Lavinia Caba
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Florea
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Popescu
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Florea
- Nephrology-Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria-Christina Ungureanu
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Letitia Leustean
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Preda
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
4
|
Popescu AD, Carsote M, Valea A, Nicola AG, Dascălu IT, Tircă T, Abdul-Razzak J, Țuculină MJ. Approach of Acromegaly during Pregnancy. Diagnostics (Basel) 2022; 12:2669. [PMID: 36359512 PMCID: PMC9689290 DOI: 10.3390/diagnostics12112669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Acromegaly-related sub/infertility, tidily related to suboptimal disease control (1/2 of cases), correlates with hyperprolactinemia (1/3 of patients), hypogonadotropic hypogonadism—mostly affecting the pituitary axis in hypopituitarism (10−80%), and negative effects of glucose profile (GP) anomalies (10−70%); thus, pregnancy is an exceptional event. Placental GH (Growth Hormone) increases from weeks 5−15 with a peak at week 37, stimulating liver IGF1 and inhibiting pituitary GH secreted by normal hypophysis, not by somatotropinoma. However, estrogens induce a GH resistance status, protecting the fetus form GH excess; thus a full-term, healthy pregnancy may be possible. This is a narrative review of acromegaly that approaches cardio-metabolic features (CMFs), somatotropinoma expansion (STE), management adjustment (MNA) and maternal-fetal outcomes (MFOs) during pregnancy. Based on our method (original, in extenso, English—published articles on PubMed, between January 2012 and September 2022), we identified 24 original papers—13 studies (3 to 141 acromegalic pregnancies per study), and 11 single cases reports (a total of 344 pregnancies and an additional prior unpublished report). With respect to maternal acromegaly, pregnancies are spontaneous or due to therapy for infertility (clomiphene, gonadotropins or GnRH) and, lately, assisted reproduction techniques (ARTs); there are no consistent data on pregnancies with paternal acromegaly. CMFs are the most important complications (7.7−50%), especially concerning worsening of HBP (including pre/eclampsia) and GP anomalies, including gestational diabetes mellitus (DM); the best predictor is the level of disease control at conception (IGF1), and, probably, family history of 2DM, and body mass index. STE occurs rarely (a rate of 0 to 9%); some of it symptoms are headache and visual field anomalies; it is treated with somatostatin analogues (SSAs) or alternatively dopamine agonists (DAs); lately, second trimester selective hypophysectomy has been used less, since pharmaco-therapy (PT) has proven safe. MNA: PT that, theoretically, needs to be stopped before conception—continued if there was STE or an inoperable tumor (no clear period of exposure, preferably, only first trimester). Most data are on octreotide > lanreotide, followed by DAs and pegvisomant, and there are none on pasireotide. Further follow-up is required: a prompt postpartum re-assessment of the mother’s disease; we only have a few data confirming the safety of SSAs during lactation and long-term normal growth and developmental of the newborn (a maximum of 15 years). MFO seem similar between PT + ve and PT − ve, regardless of PT duration; the additional risk is actually due to CMF. One study showed a 2-year median between hypophysectomy and pregnancy. Conclusion: Close surveillance of disease burden is required, particularly, concerning CMF; a personalized approach is useful; the level of statistical evidence is expected to expand due to recent progress in MNA and ART.
Collapse
Affiliation(s)
- Alexandru Dan Popescu
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy & Clinical County Hospital, 400012 Cluj-Napoca, Romania
| | - Andreea Gabriela Nicola
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Teodora Dascălu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Tiberiu Tircă
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Jaqueline Abdul-Razzak
- Department of Infant Care–Pediatrics–Neonatology, Romania & Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Jana Țuculină
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
5
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
6
|
Liang H, Gong F, Liu Z, Yang Y, Yao Y, Wang R, Wang L, Chen M, Pan H, Zhu H. A Chinese Case of X-Linked Acrogigantism and Systematic Review. Neuroendocrinology 2021; 111:1164-1175. [PMID: 33049741 DOI: 10.1159/000512240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study described a Chinese case of X-linked acrogigantism (X-LAG) and summarized the characteristics and treatment of all reported cases. METHODS Clinical materials and biological samples from a 5-year and 2-month-old female due to "growth acceleration for 4 years" were collected. Array comparative genomic hybrid (aCGH) and further verification were performed. All X-LAG cases from the PubMed and Web of Science databases were collected and summarized with available data. RESULTS The patient presented accelerating growth since 1 year, and her height reached 134.6 cm (+5.24 standard deviation score [SDS]) when she was 5-year and 2-month old. She also had coarsening facial features, snoring, and acral enlargement. Growth hormone (GH) was not suppressed by the glucose-GH inhibition test, and insulin-like growth factor 1 (IGF-1) and prolactin (PRL) levels were elevated. Pituitary MRI revealed a pituitary enlargement with a maximum diameter of 22.3 mm. Octreotide imaging indicated the presence of a pituitary adenoma. The tumor shrank slightly after 3 courses of somatostatin analog but without clinical or biochemical remissions, of which the GH nadir value was 9.4 ng/mL, and IGF-1 was elevated to 749 ng/mL. Therefore, she underwent transsphenoidal surgery. Immunohistochemistry showed GH-positive and PRL-positive cells in the pituitary adenoma. Xq26.3 microduplication of the patient's germline DNA was identified by aCGH. Of all 35 reported cases, females accounted for 71.43%. There were 93.10% and 53.83% patients with hyperprolactinemia and hyperinsulinemia, respectively. Pathology showed that 75.00% of cases were adenomas. Ninety percent of cases had germline variants. The clinical and biochemical remission rates were 78.26% and 82.61%, respectively. However, the rate of complication occurrence during therapy reached 80%. CONCLUSION It is important to recognize the possibility of X-LAG when a child under 2-year old presents overgrowth. Early diagnosis and treatment are of great importance for better treatment efficacy and clinical outcome.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhihui Liu
- Department of Endocrinology and Metabolism, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Yingying Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meiping Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| |
Collapse
|
7
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
8
|
Abstract
Pituitary adenomas are common intracranial neoplasms, with diverse phenotypes. Most of these tumors occur sporadically and are not part of genetic disorders. Over the last decades numerous genetic studies have led to identification of somatic and germline mutations associated with pituitary tumors, which has advanced the understanding of pituitary tumorigenesis. Exploring the genetic background of pituitary neuroendocrine tumors can lead to early diagnosis associated with better outcomes, and their molecular mechanisms should lead to novel targeted therapies even for sporadic tumors. This article summarizes the genes and the syndromes associated with pituitary tumors.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
9
|
Hernández-Ramírez LC. Potential markers of disease behavior in acromegaly and gigantism. Expert Rev Endocrinol Metab 2020; 15:171-183. [PMID: 32372673 PMCID: PMC7494049 DOI: 10.1080/17446651.2020.1749048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Acromegaly and gigantism entail increased morbidity and mortality if left untreated, due to the systemic effects of chronic GH and IGF-1 excess. Guidelines for the diagnosis and treatment of patients with GH excess are well established; however, the presentation, clinical behavior and response to treatment greatly vary among patients. Numerous markers of disease behavior are routinely used in medical practice, but additional biomarkers have been recently identified as a result of basic and clinical research studies.Areas covered: This review focuses on genetic, molecular and genomic features of patients with GH excess that have recently been linked to disease progression and response to treatment. A PubMed search was conducted to identify markers of disease behavior in acromegaly and gigantism. Markers already considered as part of routine studies in clinical care guidelines were excluded. Literature search was expanded for each marker identified. Novel markers not included or only partially covered in previously published reviews on the subject were prioritized.Expert opinion: Recognizing the most relevant markers of disease behavior may help the medical team tailoring the strategies for approaching each case of acromegaly and gigantism. This customized plan should make the evaluation, treatment and follow up process more efficient, greatly improving the patients' outcomes.
Collapse
Affiliation(s)
- Laura C. Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892-1862, USA
| |
Collapse
|
10
|
Wise-Oringer BK, Zanazzi GJ, Gordon RJ, Wardlaw SL, William C, Anyane-Yeboa K, Chung WK, Kohn B, Wisoff JH, David R, Oberfield SE. Familial X-Linked Acrogigantism: Postnatal Outcomes and Tumor Pathology in a Prenatally Diagnosed Infant and His Mother. J Clin Endocrinol Metab 2019; 104:4667-4675. [PMID: 31166600 PMCID: PMC6736216 DOI: 10.1210/jc.2019-00817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT X-linked acrogigantism (X-LAG), a condition of infant-onset acrogigantism marked by elevated GH, IGF-1, and prolactin (PRL), is extremely rare. Thirty-three cases, including three kindreds, have been reported. These patients have pituitary adenomas that are thought to be mixed lactotrophs and somatotrophs. CASE DESCRIPTION The patient's mother, diagnosed with acrogigantism at 21 months, underwent pituitary tumor excision at 24 months. For more than 30 years, stable PRL, GH, and IGF-1 concentrations and serial imaging studies indicated no tumor recurrence. During preconception planning, X-LAG was diagnosed: single-nucleotide polymorphism microarray showed chromosome Xq26.3 microduplication. After conception, single-nucleotide polymorphism microarray on a chorionic villus sample showed the same microduplication in the fetus, confirming familial X-LAG. The infant grew rapidly with rising PRL, GH, and IGF-1 concentrations and an enlarging suprasellar pituitary mass, despite treatment with bromocriptine. At 15 months, he underwent tumor resection. The pituitary adenoma resembled the mother's pituitary adenoma, with tumor cells arranged in trabeculae and glandular structures. In both cases, many tumor cells expressed PRL, GH, and pituitary-specific transcription factor-1. Furthermore, the tumor expressed other lineage-specific transcription factors, as well as SOX2 and octamer-binding transcription factor 4, demonstrating the multipotentiality of X-LAG tumors. Both showed an elevated Ki-67 proliferation index, 5.6% in the mother and 8.5% in the infant, the highest reported in X-LAG. CONCLUSIONS This is a prenatally diagnosed case of X-LAG. Clinical follow-up and biochemical evaluation have provided insight into the natural history of this disease. Expression of stem cell markers and several cell lineage-specific transcription factors suggests that these tumors are multipotential.
Collapse
Affiliation(s)
- Brittany K Wise-Oringer
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Columbia University Irving Medical Center, New York, New York
| | - George J Zanazzi
- Department of Pathology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca J Gordon
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sharon L Wardlaw
- Division of Endocrinology, Columbia University Irving Medical Center, New York, New York
| | - Christopher William
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medicine Center, New York, New York
| | - Brenda Kohn
- Division of Pediatric Endocrinology, Hassenfeld Children’s Hospital at NYU Langone Health, New York, New York
| | - Jeffrey H Wisoff
- Division of Pediatric Neurosurgery, Hassenfeld Children’s Hospital at NYU Langone Health, New York, New York
| | - Raphael David
- Division of Pediatric Endocrinology, Hassenfeld Children’s Hospital at NYU Langone Health, New York, New York
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Columbia University Irving Medical Center, New York, New York
- Correspondence and Reprint Requests: Sharon E. Oberfield, MD, Division of Pediatric Endocrinology, Diabetes and Metabolism, Columbia University Irving Medical Center, 622 West 168 Street, PH 17W – 307, New York, New York 10032. E-mail:
| |
Collapse
|
11
|
CD40LG duplications in patients with X-LAG syndrome commonly undergo random X-chromosome inactivation. J Allergy Clin Immunol 2019; 143:1659. [PMID: 30773288 DOI: 10.1016/j.jaci.2018.12.1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 01/19/2023]
|
12
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Abstract
In the general population, height is determined by a complex interplay between genetic and environmental factors. Pituitary gigantism is a rare but very important subgroup of patients with excessive height, as it has an identifiable and clinically treatable cause. The disease is caused by chronic growth hormone and insulin-like growth factor 1 secretion from a pituitary somatotrope adenoma that forms before the closure of the epiphyses. If not controlled effectively, this hormonal hypersecretion could lead to extremely elevated final adult height. The past 10 years have seen marked advances in the understanding of pituitary gigantism, including the identification of genetic causes in ~50% of cases, such as mutations in the AIP gene or chromosome Xq26.3 duplications in X-linked acrogigantism syndrome. Pituitary gigantism has a male preponderance, and patients usually have large pituitary adenomas. The large tumour size, together with the young age of patients and frequent resistance to medical therapy, makes the management of pituitary gigantism complex. Early diagnosis and rapid referral for effective therapy appear to improve outcomes in patients with pituitary gigantism; therefore, a high level of clinical suspicion and efficient use of diagnostic resources is key to controlling overgrowth and preventing patients from reaching very elevated final adult heights.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium.
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases and Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
14
|
Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA. An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations. Best Pract Res Clin Endocrinol Metab 2018; 32:125-140. [PMID: 29678281 DOI: 10.1016/j.beem.2018.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked acrogigantism (X-LAG) is a recently described form of familial or sporadic pituitary gigantism characterized by very early onset GH and IGF-1 excess, accelerated growth velocity, gigantism and/or acromegaloid features. Germline or somatic microduplications of the Xq26.3 chromosomal region, invariably involving the GPR101 gene, constitute the genetic defect leading to X-LAG. GPR101 encodes a class A G protein-coupled receptor that activates the 3',5'-cyclic adenosine monophosphate signaling pathway. Highly expressed in the central nervous system, the main physiological function and ligand of GPR101 remain unknown, but it seems to play a role in the normal development of the GHRH-GH axis. Early recognition of X-LAG cases is imperative because these patients require clinical management that differs from that of other patients with acromegaly or gigantism. Medical treatment with pegvisomant seems to be the best approach, since X-LAG tumors are resistant to the treatment with somatostatin analogues and dopamine agonists; surgical cure requires near-total hypophysectomy. Currently, the efforts of our research focus on the identification of GPR101 ligands; in addition, the long-term follow-up of X-LAG patients is of extreme interest as this is expected to lead to better understanding of GPR101 effects on human pathophysiology.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Jeremy Swan
- Computer Support Services Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA.
| |
Collapse
|
15
|
Beckers A, Rostomyan L, Potorac I, Beckers P, Daly AF. X-LAG: How did they grow so tall? ANNALES D'ENDOCRINOLOGIE 2017; 78:131-136. [DOI: 10.1016/j.ando.2017.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Hernández-Ramírez LC, Trivellin G, Stratakis CA. Role of Phosphodiesterases on the Function of Aryl Hydrocarbon Receptor-Interacting Protein (AIP) in the Pituitary Gland and on the Evaluation of AIP Gene Variants. Horm Metab Res 2017; 49:286-295. [PMID: 28427099 DOI: 10.1055/s-0043-104700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Familial isolated pituitary adenoma (FIPA) is caused in about 20% of cases by loss-of-function germline mutations in the AIP gene. Patients harboring AIP mutations usually present with somatotropinomas resulting either in gigantism or young-onset acromegaly. AIP encodes for a co-chaperone protein endowed with tumor suppressor properties in somatotroph cells. Among other mechanisms proposed to explain this function, a regulatory effect over the 3',5'-cyclic adenosine monophosphate (cAMP) signaling pathway seems to play a prominent role. In this setting, the well-known interaction between AIP and 2 different isoforms of phosphodiesterases (PDEs), PDE2A3 and PDE4A5, is of particular interest. While the interaction with over-expressed AIP does not seem to affect PDE2A3 function, the reported effect on PDE4A5 is, in contrast, reduced enzymatic activity. In this review, we explore the possible implications of these molecular interactions for the function of somatotroph cells. In particular, we discuss how both PDEs and AIP could act as negative regulators of the cAMP pathway in the pituitary, probably both by shared and independent mechanisms. Moreover, we describe how the evaluation of the AIP-PDE4A5 interaction has proven to be a useful tool for testing AIP mutations, complementing other in silico, in vitro, and in vivo analyses. Improved assessment of the pathogenicity of AIP mutations is indeed paramount to provide adequate guidance for genetic counseling and clinical screening in AIP mutation carriers, which can lead to prospective diagnosis of pituitary adenomas.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Iacovazzo D, Hernández-Ramírez LC, Korbonits M. Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening. Expert Rev Endocrinol Metab 2017; 12:143-153. [PMID: 30063429 DOI: 10.1080/17446651.2017.1306439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most pituitary adenomas occur sporadically, these common tumors can present in a familial setting in approximately 5% of cases. Germline mutations in several genes with autosomal dominant (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) or X-linked dominant (GPR101) inheritance are causative of familial pituitary adenomas. Due to variable disease penetrance and occurrence of de novo mutations, some patients harboring germline mutations have no family history of pituitary adenomas (simplex cases). Areas covered: We summarize the recent findings on the role of germline mutations associated with familial pituitary adenomas in patients with sporadic clinical presentation. Expert commentary: Up to 12% of patients with young onset pituitary adenomas (age at diagnosis/onset ≤30 years) and up to 25% of simplex patients with gigantism carry mutations in the AIP gene, while most cases of X-linked acrogigantism (XLAG) due to GPR101 duplication are simplex female patients with very early disease onset (<5 years). With regard to the syndromes of multiple endocrine neoplasia (MEN), MEN1 mutations can be identified in a significant proportion of patients with childhood onset prolactinomas. Somatotroph and lactotroph adenomas are the most common pituitary adenomas associated with germline predisposing mutations. Genetic screening should be considered in patients with young onset pituitary adenomas.
Collapse
Affiliation(s)
- D Iacovazzo
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| | - L C Hernández-Ramírez
- b Section on Endocrinology and Genetics , Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH , Bethesda , MD , USA
| | - M Korbonits
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| |
Collapse
|
18
|
Beckers A, Fernandes D, Fina F, Novak M, Abati A, Rostomyan L, Thiry A, Ouafik L, Pasture B, Pinhasi R, Daly AF. Paleogenetic study of ancient DNA suggestive of X-linked acrogigantism. Endocr Relat Cancer 2017; 24:L17-L20. [PMID: 28049632 DOI: 10.1530/erc-16-0558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Albert Beckers
- Department of EndocrinologyCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Daniel Fernandes
- School of Archaeology and Earth InstituteUniversity College Dublin, Belfield, Dublin, Ireland
- Department of Life SciencesCentro de Investigação em Antropologia e Saúde, University of Coimbra, Coimbra, Portugal
| | - Frederic Fina
- Assistance Publique Hôpitaux de Marseille (AP-HM) Hôpital NordService de Transfert d'Oncologie Biologique, and Laboratoire de Biologie Médicale, and Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France
| | - Mario Novak
- School of Archaeology and Earth InstituteUniversity College Dublin, Belfield, Dublin, Ireland
| | - Angelo Abati
- Department of Legal MedicineCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Liliya Rostomyan
- Department of EndocrinologyCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Albert Thiry
- Department of PathologyCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - L'Housine Ouafik
- Assistance Publique Hôpitaux de Marseille (AP-HM) Hôpital NordService de Transfert d'Oncologie Biologique, and Laboratoire de Biologie Médicale, and Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France
| | - Bertrand Pasture
- Office of the ConservatorMuséum régionale des Sciences naturelles, Mons, Belgium
| | - Ron Pinhasi
- School of Archaeology and Earth InstituteUniversity College Dublin, Belfield, Dublin, Ireland
| | - Adrian F Daly
- Department of EndocrinologyCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| |
Collapse
|
19
|
Abstract
Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1A 6BQ, UK.
| |
Collapse
|