1
|
Kralemann LEM, van Tol N, Hooykaas PJJ, Tijsterman M. Molecular analysis of the role of polymerase theta in gene targeting in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:255-262. [PMID: 38402589 DOI: 10.1111/tpj.16689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.
Collapse
Affiliation(s)
- Lejon E M Kralemann
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Niels van Tol
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
2
|
Kannan P, Chongloi GL, Majhi BB, Basu D, Veluthambi K, Vijayraghavan U. Characterization of a new rice OsMADS1 null mutant generated by homologous recombination-mediated gene targeting. PLANTA 2021; 253:39. [PMID: 33474591 DOI: 10.1007/s00425-020-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
A new, stable, null mutant of OsMADS1 generated by homologous recombination-based gene targeting in an indica rice confirms its regulatory role for floral meristem identity, its determinate development and floral organ differentiation. OsMADS1, an E-class MADS-box gene, is an important regulator of rice flower development. Studies of several partial loss-of-function and knockdown mutants show varied floret organ defects and degrees of meristem indeterminacy. The developmental consequences of a true null mutant on floret meristem identity, its determinate development and differentiation of grass-specific organs such as the lemma and palea remain unclear. In this study, we generated an OsMADS1 null mutant by homologous recombination-mediated gene targeting by inserting a selectable marker gene (hpt) in OsMADS1 and replacing parts of its cis-regulatory and coding sequences. A binary vector was constructed with diphtheria toxin A chain gene (DT-A) as a negative marker to eliminate random integrations and the hpt marker for positive selection of homologous recombination. Precise disruption of the endogenous OsMADS1 locus in the rice genome was confirmed by Southern hybridization. The homozygous osmads1ko null mutant displayed severe defects in all floral organs including the lemma and palea. We also noticed striking instances of floral reversion to inflorescence and vegetative states which has not been reported for other mutant alleles of OsMADS1 and further reinforces the role of OsMADS1 in controlling floral meristem determinacy. Our data suggest, OsMADS1 commits and maintains determinate floret development by regulating floral meristem termination, carpel and ovule differentiation genes (OsMADS58, OsMADS13) while its modulation of genes such as OsMADS15, OsIG1 and OsMADS32 could be relevant in the differentiation and development of palea. Further, our study provides an important perspective on developmental stage-dependent modulation of some OsMADS1 target genes.
Collapse
Affiliation(s)
- Pachamuthu Kannan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | | | - Bharat Bhusan Majhi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Debjani Basu
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
4
|
Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 2020. [DOI: 10.1007/s12038-020-0008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Sanagala R, Moola AK, Bollipo Diana RK. A review on advanced methods in plant gene targeting. J Genet Eng Biotechnol 2017; 15:317-321. [PMID: 30647669 PMCID: PMC6296621 DOI: 10.1016/j.jgeb.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022]
Abstract
Plant genetic engineering is one of the most significant tools implemented in the modern molecular crop breeding techniques. The conventional approaches of plant genetic transformation include Agrobacterium tumefaciens, particle bombardment, DNA uptake into protoplast. The transgenic events derived by these methods carry the transgenes that are integrated at random sites in the plant genome. Novel techniques that mediate integration of foreign genes at specific pre-determined locations circumvent many problems associated with the existing methods of gene transfer. The recent years have witnessed the emergence of gene targeting techniques by employing zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR). The present review focuses on the various approaches and their performance of plant gene targeting and suggests future directions in the important areas of plant molecular biology.
Collapse
Affiliation(s)
- Raghavendrarao Sanagala
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Anil Kumar Moola
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | | |
Collapse
|
6
|
Limera C, Sabbadini S, Sweet JB, Mezzetti B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1418. [PMID: 28861099 PMCID: PMC5559511 DOI: 10.3389/fpls.2017.01418] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 05/09/2023]
Abstract
The improvement of woody fruit species by traditional plant breeding techniques has several limitations mainly caused by their high degree of heterozygosity, the length of their juvenile phase and auto-incompatibility. The development of new biotechnological tools (NBTs), such as RNA interference (RNAi), trans-grafting, cisgenesis/intragenesis, and genome editing tools, like zinc-finger and CRISPR/Cas9, has introduced the possibility of more precise and faster genetic modifications of plants. This aspect is of particular importance for the introduction or modification of specific traits in woody fruit species while maintaining unchanged general characteristics of a selected cultivar. Moreover, some of these new tools give the possibility to obtain transgene-free modified fruit tree genomes, which should increase consumer's acceptance. Over the decades biotechnological tools have undergone rapid development and there is a continuous addition of new and valuable techniques for plant breeders. This makes it possible to create desirable woody fruit varieties in a fast and more efficient way to meet the demand for sustainable agricultural productivity. Although, NBTs have a common goal i.e., precise, fast, and efficient crop improvement, individually they are markedly different in approach and characteristics from each other. In this review we describe in detail their mechanisms and applications for the improvement of fruit trees and consider the relationship between these biotechnological tools and the EU biosafety regulations applied to the plants and products obtained through these techniques.
Collapse
Affiliation(s)
- Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Jeremy B. Sweet
- J. T. Environmental Consultants LtdCambridge, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
7
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications. Toxins (Basel) 2016; 8:49. [PMID: 26907343 PMCID: PMC4773802 DOI: 10.3390/toxins8020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
Collapse
|
9
|
Wolt JD, Wang K, Yang B. The Regulatory Status of Genome-edited Crops. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:510-8. [PMID: 26251102 PMCID: PMC5042095 DOI: 10.1111/pbi.12444] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 05/18/2023]
Abstract
Genome editing with engineered nucleases (GEEN) represents a highly specific and efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes. Addressing ambiguities regarding the regulatory status of genome editing techniques is critical to their application for development of economically useful crop traits. Continued regulatory focus on the process used, rather than the nature of the novel phenotype developed, results in confusion on the part of regulators, product developers, and the public alike and creates uncertainty as of the use of genome engineering tools for crop improvement.
Collapse
Affiliation(s)
- Jeffrey D Wolt
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Biosafety Institute for Genetically Modified Agricultural Products, Iowa State University, Ames, IA, USA
- Crop Bioengineering Consortium, Iowa State University, Ames, IA, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Crop Bioengineering Consortium, Iowa State University, Ames, IA, USA
| | - Bing Yang
- Crop Bioengineering Consortium, Iowa State University, Ames, IA, USA
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Lombardo L, Coppola G, Zelasco S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends Biotechnol 2016; 34:49-57. [DOI: 10.1016/j.tibtech.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
|
11
|
Forsyth A, Weeks T, Richael C, Duan H. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1572. [PMID: 27826306 PMCID: PMC5078815 DOI: 10.3389/fpls.2016.01572] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines transcription activator-like effector nuclease (TALEN)-mediated induction of double strand breaks (DSBs) and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.
Collapse
|
12
|
Noman A, Aqeel M, He S. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing. FRONTIERS IN PLANT SCIENCE 2016; 7:1740. [PMID: 27917188 PMCID: PMC5116475 DOI: 10.3389/fpls.2016.01740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/04/2016] [Indexed: 05/07/2023]
Abstract
Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad Aqeel
- Department of Botany, University of AgricultureFaisalabad, Pakistan
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister Key Laboratory for Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He,
| |
Collapse
|
13
|
Singhal P, Jan AT, Azam M, Haq QMR. Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1077478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK. Identification of "safe harbor" loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. FRONTIERS IN PLANT SCIENCE 2014; 5:302. [PMID: 25018764 PMCID: PMC4071976 DOI: 10.3389/fpls.2014.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/09/2014] [Indexed: 05/03/2023]
Abstract
Zinc-finger nucleases (ZFNs) have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs) at specific sites, which are further repaired through homologous recombination (HR) or non-homologous end joining (NHEJ). However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3), harboring β-glucuronidase (GUS) as a reporter gene, were used to identify safe harbor loci on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR). Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.
Collapse
Affiliation(s)
- Christian Cantos
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Perigio Francisco
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Kurniawan R. Trijatmiko
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and DevelopmentBogor, Indonesia
| | - Inez Slamet-Loedin
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Prabhjit K. Chadha-Mohanty
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| |
Collapse
|
15
|
Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. PLANT MOLECULAR BIOLOGY 2014; 85:219-32. [PMID: 24535433 DOI: 10.1007/s11103-014-0178-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/31/2014] [Indexed: 05/05/2023]
Abstract
While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Takaki Yamauchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan,
| | | | | | | | | |
Collapse
|
16
|
Shimatani Z, Nishizawa-Yokoi A, Endo M, Toki S, Terada R. Positive-negative-selection-mediated gene targeting in rice. FRONTIERS IN PLANT SCIENCE 2014; 5:748. [PMID: 25601872 PMCID: PMC4283509 DOI: 10.3389/fpls.2014.00748] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/08/2014] [Indexed: 05/04/2023]
Abstract
Gene targeting (GT) refers to the designed modification of genomic sequence(s) through homologous recombination (HR). GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ) occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS) is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice-a major crop worldwide-reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology based on PNS are discussed.
Collapse
Affiliation(s)
- Zenpei Shimatani
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Rie Terada
- Development of Agrobiological Resources, Faculty of Agriculture, Meijo UniversityNagoya, Japan
- *Correspondence: Rie Terada, Development of Agrobiological Resources, Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Aichi, Japan e-mail:
| |
Collapse
|
17
|
Endo M, Toki S. Toward establishing an efficient and versatile gene targeting system in higher plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5411-28. [PMID: 24179097 DOI: 10.1093/jxb/ert333] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.
Collapse
Affiliation(s)
- Ryan Whitford
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
de Pater S, Pinas JE, Hooykaas PJJ, van der Zaal BJ. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:510-5. [PMID: 23279135 PMCID: PMC3719044 DOI: 10.1111/pbi.12040] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 05/20/2023]
Abstract
Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Antunes MS, Smith JJ, Jantz D, Medford JI. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol 2012; 12:86. [PMID: 23148662 PMCID: PMC3536558 DOI: 10.1186/1472-6750-12-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/26/2012] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed. RESULTS We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site. CONCLUSION These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes.
Collapse
Affiliation(s)
- Mauricio S Antunes
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - J Jeff Smith
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - Derek Jantz
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - June I Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
22
|
Lorieux M, Blein M, Lozano J, Bouniol M, Droc G, Diévart A, Périn C, Mieulet D, Lanau N, Bès M, Rouvière C, Gay C, Piffanelli P, Larmande P, Michel C, Barnola I, Biderre-Petit C, Sallaud C, Perez P, Bourgis F, Ghesquière A, Gantet P, Tohme J, Morel JB, Guiderdoni E. In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:555-68. [PMID: 22369597 DOI: 10.1111/j.1467-7652.2012.00689.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines. We estimate that 8686 predicted gene intervals--i.e. one-fourth to one-fifth of the estimated rice nontransposable element gene complement--are interrupted by sequence-indexed T-DNA (6563 genes) and/or Tos17 (2755 genes) inserts. Six hundred and forty-three genes are interrupted by both T-DNA and Tos17 inserts. High quality of the sequence indexation of the T2 seed samples was ascertained by several approaches. Field evaluation under agronomic conditions of 27,832 OTL has revealed that 18.2% exhibit at least one morphophysiological alteration in the T1 progeny plants. Screening 10,000 lines for altered response to inoculation by the fungal pathogen Magnaporthe oryzae allowed to observe 71 lines (0.7%) developing spontaneous lesions simulating disease mutants and 43 lines (0.4%) exhibiting an enhanced disease resistance or susceptibility. We show here that at least 3.5% (four of 114) of these alterations are tagged by the mutagens. The presence of allelic series of sequence-indexed mutations in a gene among OTL that exhibit a convergent phenotype clearly increases the chance of establishing a linkage between alterations and inserts. This convergence approach is illustrated by the identification of the rice ortholog of AtPHO2, the disruption of which causes a lesion-mimic phenotype owing to an over-accumulation of phosphate, in nine lines bearing allelic insertions.
Collapse
Affiliation(s)
- Mathias Lorieux
- IRD, UMR DIADE, CIAT, Agrobiodiversity and Biotechnology Project, Cali, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A. Genome modifications in plant cells by custom-made restriction enzymes. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:373-89. [PMID: 22469004 DOI: 10.1111/j.1467-7652.2011.00672.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
24
|
Warnasooriya SN, Montgomery BL. Using transgenic modulation of protein synthesis and accumulation to probe protein signaling networks in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1312-21. [PMID: 21862868 PMCID: PMC3258059 DOI: 10.4161/psb.6.9.16437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deployment of new model species in the plant biology community requires the development and/or improvement of numerous genetic tools. Sequencing of the Arabidopsis thaliana genome opened up a new challenge of assigning biological function to each gene. As many genes exhibit spatiotemporal or other conditional regulation of biological processes, probing for gene function necessitates applications that can be geared toward temporal, spatial and quantitative functional analysis in vivo. The continuing quest to establish new platforms to examine plant gene function has resulted in the availability of numerous genomic and proteomic tools. Classical and more recent genome-wide experimental approaches include conventional mutagenesis, tagged DNA insertional mutagenesis, ectopic expression of transgenes, activation tagging, RNA interference and two-component transactivation systems. The utilization of these molecular tools has resulted in conclusive evidence for the existence of many genes, and expanded knowledge on gene structure and function. This review covers several molecular tools that have become increasingly useful in basic plant research. We discuss their advantages and limitations for probing cellular protein function while emphasizing the contributions made to lay the fundamental groundwork for genetic manipulation of crops using plant biotechnology.
Collapse
Affiliation(s)
- Sankalpi N Warnasooriya
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
25
|
Saika H, Toki S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. PLANT CELL REPORTS 2010; 29:1351-64. [PMID: 20853107 PMCID: PMC2978894 DOI: 10.1007/s00299-010-0921-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 05/10/2023]
Abstract
We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning--a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath--a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting.
Collapse
Affiliation(s)
- Hiroaki Saika
- Plant Genetic Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Seiichi Toki
- Plant Genetic Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, 244-0813 Japan
| |
Collapse
|
26
|
Tanaka S, Ishii C, Hatakeyama S, Inoue H. High efficient gene targeting on the AGAMOUS gene in an ArabidopsisAtLIG4 mutant. Biochem Biophys Res Commun 2010; 396:289-93. [PMID: 20406622 DOI: 10.1016/j.bbrc.2010.04.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Gene targeting induced by homologous integration of a foreign DNA segment into a chromosomal target sequence enables precise disruption or replacement of genes of interest and provides an effective means to analyze gene function, and also becomes an useful technique for breeding. But, integration of introduced DNA fragments is predominantly non-homologous in most species. However, we presented high-efficient homologous integration in disruptants of non-homologous end joining (NHEJ), that is, the Ku70-, Ku80- or Lig4-homologs deficient strain, in a model fungus Neurospora crassa. When the effect of NHEJ-defective plants for gene targeting was therefore examined in a model plant Arabidopsis (Arabidopsis thaliana), the efficiencies of gene targeting in the Atlig4/Atlig4 plant were 2/7 (28.6%) against calli obtained a selection-marker gene, 2/16 (12.5%) against selected calli, and about 2/540 (0.004%) against total cell particles at the starting point for transformation. The results of this paper show that the NHEJ-deficient system might cause a decrease in the efficiency of transformation but gives true targeted transformants with high efficiency in plant cell.
Collapse
Affiliation(s)
- Shuuitsu Tanaka
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Japan.
| | | | | | | |
Collapse
|
27
|
Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC. Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. PLANT PHYSIOLOGY 2009; 151:1087-95. [PMID: 19429604 PMCID: PMC2773068 DOI: 10.1104/pp.109.137612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/05/2009] [Indexed: 05/02/2023]
Abstract
A targeting method to insert genes at a previously characterized genetic locus to make plant transformation and transgene expression predictable is highly desirable for plant biotechnology. We report the successful targeting of transgenes to predefined soybean (Glycine max) genome sites using the yeast FLP-FRT recombination system. First, a target DNA containing a pair of incompatible FRT sites flanking a selection gene was introduced in soybean by standard biolistic transformation. Transgenic events containing a single copy of the target were retransformed with a donor DNA, which contained the same pair of FRT sites flanking a different selection gene, and a FLP expression DNA. Precise DNA cassette exchange was achieved between the target and donor DNA via recombinase-mediated cassette exchange, so that the donor DNA was introduced at the locus previously occupied by the target DNA. The introduced donor genes expressed normally and segregated according to Mendelian laws.
Collapse
Affiliation(s)
- Zhongsen Li
- DuPont/Pioneer Crop Genetics, Experimental Station, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Breyer D, Herman P, Brandenburger A, Gheysen G, Remaut E, Soumillion P, Van Doorsselaere J, Custers R, Pauwels K, Sneyers M, Reheul D. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge? ACTA ACUST UNITED AC 2009; 8:57-64. [PMID: 19833073 DOI: 10.1051/ebr/2009007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.
Collapse
Affiliation(s)
- Didier Breyer
- Scientific Institute of Public Health, Division of Biosafety and Biotechnology, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:386-96. [PMID: 19519802 DOI: 10.1111/j.1365-313x.2009.03947.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although homologous recombination-promoted knock-in targeting to monitor the expression of a gene by fusing a reporter gene with its promoter is routine practice in mice, gene targeting to modify endogenous genes in flowering plants remains in its infancy. In the knock-in targeting, the junction sequence between a reporter gene and an endogenous target promoter can be designed properly, and transgenic plants carrying an identical and desired knock-in allele can be repeatedly obtained. By employing a reproducible gene-targeting procedure with positive-negative selection in rice, we were able to obtain fertile transgenic knock-in plants with the promoterless GUS reporter gene encoding beta-glucuronidase fused with the endogenous promoter of MET1a, one of two rice MET1 genes encoding a maintenance DNA methyltransferase. All of the primary (T(0)) transgenic knock-in plants obtained were found to carry only one copy of GUS, with the anticipated structure in the heterozygous condition, and no ectopic events associated with gene targeting could be detected. We showed the reproducible, dosage-dependent and spatiotemporal expression of GUS in the selfed progenies of independently isolated knock-in targeted plants. The results in knock-in targeted plants contrast sharply with the results in transgenic plants with the MET1a promoter-fused GUS reporter gene integrated randomly in the genome: clear interindividual variation of GUS expression was observed among independently obtained plants bearing the randomly integrated transgenes. As our homologous recombination-mediated gene-targeting strategy with positive-negative selection is, in principle, applicable to modify any endogenous gene, knock-in targeting would facilitate basic and applied plant research.
Collapse
Affiliation(s)
- Takaki Yamauchi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|
31
|
Mittmann F, Dienstbach S, Weisert A, Forreiter C. Analysis of the phytochrome gene family in Ceratodon purpureus by gene targeting reveals the primary phytochrome responsible for photo- and polarotropism. PLANTA 2009; 230:27-37. [PMID: 19330350 DOI: 10.1007/s00425-009-0922-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/06/2009] [Indexed: 05/13/2023]
Abstract
Using gene targeting by homologous recombination in Ceratodon purpureus, we were able to knock out four phytochrome photoreceptor genes independently and to analyze their function with respect to red light dependent phototropism, polarotropism, and chlorophyll content. The strongest phenotype was found in knock-out lines of a newly described phytochrome gene termed CpPHY4 lacking photo- and polarotropic responses at moderate fluence rates. Eliminating the atypical phytochrome gene CpPHY1, which is the only known phytochrome-like gene containing a putative C-terminal tyrosine kinase-like domain, affects red light-induced chlorophyll accumulation. This result was surprising, since no light dependent function was ever allocated to this unusual gene.
Collapse
Affiliation(s)
- Franz Mittmann
- Department of Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390 Giessen, Germany
| | | | | | | |
Collapse
|
32
|
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009; 459:437-41. [PMID: 19404259 DOI: 10.1038/nature07992] [Citation(s) in RCA: 487] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/17/2009] [Indexed: 11/09/2022]
Abstract
Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.
Collapse
Affiliation(s)
- Vipula K Shukla
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF. Targeted transgene integration in plant cells using designed zinc finger nucleases. PLANT MOLECULAR BIOLOGY 2009; 69:699-709. [PMID: 19112554 DOI: 10.1007/s11103-008-9449-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/14/2008] [Indexed: 05/20/2023]
Abstract
Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.
Collapse
Affiliation(s)
- Charles Q Cai
- Dow AgroSciences, LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Johzuka-Hisatomi Y, Terada R, Iida S. Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 2008; 36:4727-35. [PMID: 18632759 PMCID: PMC2504299 DOI: 10.1093/nar/gkn451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome by homologous recombination. Through a gene-targeting procedure with positive–negative selection, we previously reported the generation of fertile transgenic rice plants with a positive marker inserted into the Adh2 gene by using an Agrobacterium-mediated transformation vector containing the positive marker flanked by two 6-kb homologous segments for recombination. We describe here that base changes within the homologous segments in the vector could be efficiently transferred into the corresponding genomic sequences of rice recombinants. Interestingly, a few sequences from the host genome were flanked by the changed sequences derived from the vector in most of the recombinants. Because a single-stranded T-DNA molecule in Agrobacterium-mediated transformation is imported into the plant nucleus and becomes double-stranded, both single-stranded and double-stranded T-DNA intermediates can serve in gene-targeting processes. Several alternative models, including the occurrence of the mismatch correction of heteroduplex molecules formed between the genomic DNA and either a single-stranded or double-stranded T-DNA intermediate, are compared to explain the observation, and implications for the modification of endogenous genes for functional genomic analysis by gene targeting are discussed.
Collapse
|
35
|
Johzuka-Hisatomi Y, Maekawa M, Takagi K, Eun CH, Yamauchi T, Shimatani Z, Ahmed N, Urawa H, Tsugane K, Terada R, Iida S. Homologous Recombination-dependent Gene Targeting and an Active DNA Transposon nDart-promoted Gene Tagging for Rice Functional Genomics. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S. Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. PLANT PHYSIOLOGY 2007; 144:846-56. [PMID: 17449652 PMCID: PMC1914187 DOI: 10.1104/pp.107.095992] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.
Collapse
Affiliation(s)
- Rie Terada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
37
|
Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:361-80. [PMID: 17430544 DOI: 10.1111/j.1467-7652.2007.00239.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
38
|
Endo M, Osakabe K, Ichikawa H, Toki S. Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. ACTA ACUST UNITED AC 2006; 47:372-9. [PMID: 16418231 DOI: 10.1093/pcp/pcj003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Precise modification of plant genomes via gene targeting (GT) is important for the study of gene function in vivo. A reliable GT system using the protoporphyrinogen oxidase (PPO) gene in Arabidopsis was reported 4 years ago; however, there are no subsequent successful reports of GT in Arabidopsis. A previous study showed ectopic gene targeting (EGT) of the endogenous gene in two-thirds of GT plants, which was an obstacle to efficient true gene targeting (TGT). The endogenous acetolactate synthase (ALS) gene is involved in the biosynthesis of branched chain amino acids in plants and is the site of action of several herbicides. To confirm the generality of the GT system in Arabidopsis, and to characterize the EGT event in plants in detail, we converted ALS from a herbicide (imazapyr)-susceptible to a -resistant form by GT. We obtained two imazapyr-resistant plants following GT. One of the targeting events was TGT while the other was EGT. After detailed Southern blotting, PCR and nucleotide sequence analysis of the EGT plant, we determined the genomic position and structure of the ectopically targeted site. Based on our findings, we discuss the possible mechanisms of EGT in plants.
Collapse
Affiliation(s)
- Masaki Endo
- Department of Plant Biotechnology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|