1
|
Guo S, Zhang F, Du X, Zhang X, Huang X, Li Z, Zhang Y, Gan P, Li H, Li M, Wang X, Tang C, Wang X, Kang Z, Zhang X. TaANK-TPR1 enhances wheat resistance against stripe rust via controlling gene expression and protein activity of NLR protein TaRPP13L1. Dev Cell 2025:S1534-5807(25)00037-1. [PMID: 39954677 DOI: 10.1016/j.devcel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Nucleotide-binding site, leucine-rich repeat (NLR) proteins activate a robust immune response on recognition of pathogen invasion. However, the function and regulatory mechanisms of NLRs during Puccinia striiformis f. sp. tritici (Pst) infection in wheat remain elusive. Here, we identify an ankyrin (ANK) repeat and tetratricopeptide repeat (TPR)-containing protein, TaANK-TPR1, which plays a positive role in the regulation of wheat resistance against Pst and the immune response of NLR. TaANK-TPR1 targets the NLR protein TaRPP13L1 (Recognition of PeronosporaParasitica 13-like 1) to facilitate its homodimerization and cell death to enhance the resistance of wheat against Pst. Meanwhile, TaANK-TPR1 binds to the TGACGT motif (methyl jasmonate-responsive element) of the TaRPP13L1 promoter and activates TaRPP13L1 transcription. Both TaANK-TPR1 and TaRPP13L1 respond to jasmonic acid (JA) signaling via the TGACGT element. Importantly, overexpressing TaRPP13L1 confers robust rust resistance without impacting important agronomic traits in the field. These findings identify a regulatory mechanism of NLR protein and provide targets for improving crop disease resistance.
Collapse
Affiliation(s)
- Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoya Du
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zelong Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyue Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Rychel-Bielska S, Bocianowski J, Wolko Ł, Kowalczewski PŁ, Nowicki M, Kwiatek MT. Expression patterns of candidate genes for the Lr46/Yr29 "slow rust" locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait. PLoS One 2024; 19:e0309944. [PMID: 39240941 PMCID: PMC11379320 DOI: 10.1371/journal.pone.0309944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Radzikow, Poland
| |
Collapse
|
4
|
Chang J, Mapuranga J, Li R, Zhang Y, Shi J, Yan H, Yang W. Wheat Leaf Rust Fungus Effector Protein Pt1641 Is Avirulent to TcLr1. PLANTS (BASEL, SWITZERLAND) 2024; 13:2255. [PMID: 39204691 PMCID: PMC11359021 DOI: 10.3390/plants13162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Wheat leaf rust fungus is an obligate parasitic fungus that can absorb nutrients from its host plant through haustoria and secrete effector proteins into host cells. The effector proteins are crucial factors for pathogenesis as well as targets for host disease resistance protein recognition. Exploring the role of effector proteins in the pathogenic process of Puccinia triticina Eriks. (Pt) is of great significance for unraveling its pathogenic mechanisms. We previously found that a cysteine-rich effector protein, Pt1641, is highly expressed during the interaction between wheat and Pt, but its specific role in pathogenesis remains unclear. Therefore, this study employed techniques such as heterologous expression, qRT-PCR analysis, and host-induced gene silencing (HIGS) to investigate the role of Pt1641 in the pathogenic process of Pt. The results indicate that Pt1641 is an effector protein with a secretory function and can inhibit BAX-induced programmed cell death in Nicotiana benthamiana. qRT-PCR analyses showed that expression levels of Pt1641 were different during the interaction between the high-virulence strain THTT and low-virulence strains FGD and Thatcher, respectively. The highest expression level in the low-virulence strain FGD was four times that of the high-virulence strain THTT. The overexpression of Pt1641 in wheat near-isogenic line TcLr1 induced callose deposition and H2O2 production on TcLr1. After silencing Pt1641 in the Pt low-virulence strain FGD on wheat near-isogenic line TcLr1, the pathogenic phenotype of Pt physiological race FGD on TcLr1 changed from ";" to "3", indicating that Pt1641 plays a non-toxic function in the pathogenicity of FGD to TcLr1. This study helps to reveal the pathogenic mechanism of wheat leaf rust and provides important guidance for the mining and application of Pt avirulent genes.
Collapse
Affiliation(s)
- Jiaying Chang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Johannes Mapuranga
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Ruolin Li
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Yingdan Zhang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Jie Shi
- International Science and Technology Joint Research Center on IPM of Hebei Province, IPM Innovation Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China;
| | - Hongfei Yan
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Wenxiang Yang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| |
Collapse
|
5
|
Wang W, Li H, Qiu L, Wang H, Pan W, Yang Z, Wei W, Liu N, Sun J, Hu Z, Ma J, Ni Z, Li Y, Sun Q, Xie C. Fine-mapping of LrN3B on wheat chromosome arm 3BS, one of the two complementary genes for adult-plant leaf rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:203. [PMID: 39134836 DOI: 10.1007/s00122-024-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/27/2024] [Indexed: 09/14/2024]
Abstract
The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Weidong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Li
- Tongfang Knowledge Network Digital Publishing Technology Co., LTD, Taiyuan, 030006, Shanxi, China
| | - Lina Qiu
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Huifang Wang
- Lixian Bureau of Agriculture and Rural Affairs, Baoding, 071400, Hebei, China
| | - Wei Pan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zuhuan Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxin Wei
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Nannan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Junna Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Amouzoune M, Rehman S, Benkirane R, Udupa S, Mamidi S, Kehel Z, Al-Jaboobi M, Amri A. Genome wide association study of seedling and adult plant leaf rust resistance in two subsets of barley genetic resources. Sci Rep 2024; 14:15428. [PMID: 38965257 PMCID: PMC11224298 DOI: 10.1038/s41598-024-53149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 07/06/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.
Collapse
Affiliation(s)
- Mariam Amouzoune
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco.
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco.
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
- Field Crop Development Center, The Olds College, Lacombe, AB, T4L 1W8, Canada
| | - Rachid Benkirane
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sripada Udupa
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Muamer Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| |
Collapse
|
7
|
Habte N, Girma G, Xu X, Liao CJ, Adeyanju A, Hailemariam S, Lee S, Okoye P, Ejeta G, Mengiste T. Haplotypes at the sorghum ARG4 and ARG5 NLR loci confer resistance to anthracnose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:106-123. [PMID: 38111157 DOI: 10.1111/tpj.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.
Collapse
Affiliation(s)
- Nida Habte
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Xiaochen Xu
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Pascal Okoye
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
8
|
Jin Y, Xiao L, Zheng J, Su F, Yu Z, Mu Y, Zhang W, Li L, Han G, Ma P. Genetic Analysis and Molecular Identification of the Powdery Mildew Resistance in 116 Elite Wheat Cultivars/Lines. PLANT DISEASE 2023; 107:3801-3809. [PMID: 37272049 DOI: 10.1094/pdis-04-23-0792-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide. Host resistance is the preferred method for limiting the disease epidemic, protecting the environment, and minimizing economic losses. In the present study, the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines from different wheat-growing regions were tested using the Bgt isolate E09. Next, 116 resistant genotypes were identified and then crossed with susceptible wheat cultivars/lines to produce segregating populations for genetic analysis. Among them, 87, 19, and 10 genotypes displayed single, dual, and multiple genic inheritance, respectively. To identify the Pm gene(s) in those resistant genotypes, 16 molecular markers for 13 documented Pm genes were used to test the resistant and susceptible parents and their segregating populations. Of the 87 wheat genotypes that fitted the monogenic inheritance, 75 carried the Pm2a allele. Three, two, one, and two genotypes carried Pm21, Pm6, Pm4, and the recessive genes pm6 and pm42, respectively. Four genotypes did not carry any of the tested genes, suggesting that they might have other uncharacterized or new genes. The other 29 wheat cultivars/lines carried two or more of the tested Pm genes and/or other untested genes, including Pm2, Pm5, Pm6, and/or pm42. It was obvious that Pm2 was widely used in wheat production, whereas Pm1, Pm24, Pm33, Pm34, Pm35, Pm45, and Pm47 were not detected in any of these resistant wheat genotypes. This study clarified the genetic basis of the powdery mildew resistance of these wheat cultivars/lines to provide information for their rational utilization in different wheat-growing regions. Moreover, some wheat genotypes which may have novel Pm gene(s) were mined to enrich the diversity of resistance source.
Collapse
Affiliation(s)
- Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Luning Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianpeng Zheng
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Fuyu Su
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ziyang Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yanjun Mu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wenjing Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Mackenzie A, Norman M, Gessese M, Chen C, Sørensen C, Hovmøller M, Ma L, Forrest K, Hickey L, Bariana H, Bansal U, Periyannan S. Wheat stripe rust resistance locus YR63 is a hot spot for evolution of defence genes - a pangenome discovery. BMC PLANT BIOLOGY 2023; 23:590. [PMID: 38008766 PMCID: PMC10680240 DOI: 10.1186/s12870-023-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.
Collapse
Affiliation(s)
- Amy Mackenzie
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Michael Norman
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
| | - Mesfin Gessese
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
- Present address:, Wolaita sodo University, Sodo, Ethiopia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Chris Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Lina Ma
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Lee Hickey
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
- School of Science, Western Sydney University, Bourke Road, Richmond, New South Wales, 2753, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia.
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia.
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
- School of Agriculture and Environmental Science & Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
10
|
Yang G, Zhang N, Boshoff WHP, Li H, Li B, Li Z, Zheng Q. Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7J s into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:231. [PMID: 37875643 DOI: 10.1007/s00122-023-04474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE A novel leaf rust resistance locus located on a terminal segment (0-69.29 Mb) of Thinopyrum intermedium chromosome arm 7JsS has been introduced into wheat genome for disease resistance breeding. Xiaoyan 78829, a wheat-Thinopyrum intermedium partial amphiploid, exhibits excellent resistance to fungal diseases in wheat. To transfer its disease resistance to common wheat (Triticum aestivum), we previously developed a translocation line WTT26 using chromosome engineering. Disease evaluation showed that WTT26 was nearly immune to 14 common races of leaf rust pathogen (Puccinia triticina) and highly resistant to Ug99 race PTKST of stem rust pathogen (P. graminis f. sp. tritici) at the seedling stage. It also displayed high adult plant resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Cytogenetic and molecular marker analysis revealed that WTT26 carried a T4BS·7JsS chromosome translocation. Once transferred into the susceptible wheat genetic background, chromosome 7JsS exhibited its resistance to leaf rust, indicating that the resistance locus was located on this alien chromosome. To enhance the usefulness of this locus in wheat breeding, we further developed several new translocation lines with small Th. intermedium segments using irradiation and developed 124 specific markers using specific-locus amplified fragment sequencing, which increased the marker density of chromosome 7JsS. Furthermore, a refined physical map of chromosome 7JsS was constructed with 74 specific markers, and six bins were thus arranged according to the co-occurrence of markers and alien chromosome segments. Combining data from specific marker amplification and resistance evaluation, we mapped a new leaf rust resistance locus in the 0-69.29 Mb region on chromosome 7JsS. The translocation lines carrying the new leaf rust resistance locus and its linked markers will contribute to wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Zhang
- Department of Plant Pathology, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Xu S, Lyu Z, Zhang N, Li M, Wei X, Gao Y, Cheng X, Ge W, Li X, Bao Y, Yang Z, Ma X, Wang H, Kong L. Genetic mapping of the wheat leaf rust resistance gene Lr19 and development of translocation lines to break its linkage with yellow pigment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:200. [PMID: 37639002 DOI: 10.1007/s00122-023-04425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
KEY MESSAGE The leaf rust resistance gene Lr19, which is present on the long arm of chromosome 7E1 in Thinopyrum ponticum, was mapped within a 0.3-cM genetic interval, and translocation lines were developed to break its linkage with yellow pigmentation The leaf rust resistance locus Lr19, which was transferred to wheat (Triticum aestivum) from its relative Thinopyrum ponticum in 1966, still confers broad resistance to most known races of the leaf rust pathogen Puccinia triticina (Pt) worldwide. However, this gene has not previously been fine-mapped, and its tight linkage with a gene causing yellow pigmentation has limited its application in bread wheat breeding. In this study, we genetically mapped Lr19 using a bi-parental population from a cross of two wheat-Th. ponticum substitution lines, the Lr19-carrying line 7E1(7D) and the leaf rust-susceptible line 7E2(7D). Genetic analysis of the F2 population and the F2:3 families showed that Lr19 was a single dominant gene. Genetic markers allowed the gene to be mapped within a 0.3-cM interval on the long arm of Th. ponticum chromosome 7E1, flanked by markers XsdauK3734 and XsdauK2839. To reduce the size of the Th. ponticum chromosome segment carrying Lr19, the Chinese Spring Ph1b mutant was employed to promote recombination between the homoeologous chromosomes of the wheat chromosome 7D and the Th. ponticum chromosome 7E1. Two translocation lines with short Th. ponticum chromosome fragments carrying Lr19 were identified using the genetic markers closely linked to Lr19. Both translocation lines were resistant to 16 Pt races collected throughout China. Importantly, the linkage between Lr19 and yellow pigment content was broken in one of the lines. Thus, the Lr19 linked markers and translocation lines developed in this study are valuable resources in marker-assisted selection as part of common wheat breeding programs.
Collapse
Affiliation(s)
- Shoushen Xu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhongfan Lyu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, People's Republic of China
| | - Mingzhu Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinyi Wei
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yuhang Gao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinxin Cheng
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Wenyang Ge
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xuefeng Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yinguang Bao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, Sichun, People's Republic of China
| | - Xin Ma
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Lingrang Kong
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Krępski T, Olechowski M, Samborska-Skutnik I, Święcicka M, Grądzielewska A, Rakoczy-Trojanowska M. Identification and characteristics of wheat Lr orthologs in three rye inbred lines. PLoS One 2023; 18:e0288520. [PMID: 37440539 DOI: 10.1371/journal.pone.0288520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The genetic background of the immune response of rye to leaf rust (LR), although extensively studied, is still not well understood. The recent publication of the genome of rye line Lo7 and the development of efficient transcriptomic methods has aided the search for genes that confer resistance to this disease. In this study, we investigated the potential role of rye orthologs of wheat Lr genes (Lr1, Lr10, Lr21, Lr22a, and RGA2/T10rga2-1A) in the LR seedling-stage resistance of inbred rye lines D33, D39, and L318. Bioinformatics analysis uncovered numerous Lr orthologs in the Lo7 genome, namely, 14 ScLr1, 15 ScRga2, and 2 ScLr21 paralogs, and 1 each of ScLr10 and ScLr22a genes. The paralogs of ScLr1, ScRga2, and ScLr21 were structurally different from one another and their wheat counterparts. According to an RNA sequencing analysis, only four wheat Lr gene orthologs identified in the Lo7 genome (ScLr1_3, ScLr1_4, ScLr1_8, and ScRga2_6) were differentially expressed; all four were downregulated after infection with compatible or incompatible isolates of Puccinia recondita f. sp. secalis (Prs). Using a more precise tool, RT-qPCR, we found that two genes were upregulated at 20 h post-infection, namely, ScLr1_4 and ScLr1_8 in lines D33 and D39, respectively, both of which have been found to be resistant to LR under field conditions and after treatment with a semi-compatible Prs strain. We were unable to discern any universal pattern of gene expression after Prs infection; on the contrary, all detected relationships were plant genotype-, Prs isolate-, or time-specific. Nevertheless, at least some Lr orthologs in rye (namely, ScLr1_3 ScLr1_4, ScLr1_8, and ScRga2_6), even though mainly downregulated, may play an important role in the response of rye to LR.
Collapse
Affiliation(s)
- Tomasz Krępski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Olechowski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Izabela Samborska-Skutnik
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
15
|
Hou W, Lu Q, Ma L, Sun X, Wang L, Nie J, Guo P, Liu T, Li Z, Sun C, Ren Y, Wang X, Yang J, Chen F. Mapping of quantitative trait loci for leaf rust resistance in the wheat population 'Xinmai 26/Zhoumai 22'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3019-3032. [PMID: 36879436 DOI: 10.1093/jxb/erad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/02/2023] [Indexed: 05/21/2023]
Abstract
Leaf rust, caused by the fungal pathogen Puccinia triticina (Pt), is one of the major and dangerous diseases of wheat, and has caused serious yield loss of wheat worldwide. Here, we investigated adult-plant resistance (APR) to leaf rust in a recombinant inbred line (RIL) population derived from 'Xinmai 26' and 'Zhoumai 22' over 3 years. Linkage mapping for APR to leaf rust revealed four quantitative trait loci (QTL) in this RIL population. Two QTL, QLr.hnau-2BS and QLr.hnau-3BS were contributed by 'Zhoumai22', whereas QLr.hnau-2DS and QLr.hnau-5AL were contributed by 'Xinmai 26'. The QLr.hnau-2BS covering a race-specific resistance gene Lr13 showed the most stable APR to leaf rust. Overexpression of Lr13 significantly increased APR to leaf rust. Interestingly, we found that a CNL(coiled coil-nucleotide-binding site-leucine-rich repeat)-like gene, TaCN, in QLr.hnau-2BS completely co-segregated with leaf rust resistance. The resistant haplotype TaCN-R possessed half the sequence of the coiled-coil domain of TaCN protein. Lr13 strongly interacted with TaCN-R, but did not interact with the full-length TaCN (TaCN-S). In addition, TaCN-R was significantly induced after Pt inoculation and changed the sub-cellular localization of Lr13 after interaction. Therefore, we hypothesized that TaCN-R mediated leaf rust resistance possibly by interacting with Lr13. This study provides important QTL for APR to leaf rust, and new insights into understanding how a CNL gene modulates disease resistance in common wheat.
Collapse
Affiliation(s)
- Weixiu Hou
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Ti Liu
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zaifeng Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Annan EN, Huang L. Molecular Mechanisms of the Co-Evolution of Wheat and Rust Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091809. [PMID: 37176866 PMCID: PMC10180972 DOI: 10.3390/plants12091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Wheat (Triticum spp.) is a cereal crop domesticated >8000 years ago and the second-most-consumed food crop nowadays. Ever since mankind has written records, cereal rust diseases have been a painful awareness in antiquity documented in the Old Testament (about 750 B.C.). The pathogen causing the wheat stem rust disease is among the first identified plant pathogens in the 1700s, suggesting that wheat and rust pathogens have co-existed for thousands of years. With advanced molecular technologies, wheat and rust genomes have been sequenced, and interactions between the host and the rust pathogens have been extensively studied at molecular levels. In this review, we summarized the research at the molecular level and organized the findings based on the pathogenesis steps of germination, penetration, haustorial formation, and colonization of the rusts to present the molecular mechanisms of the co-evolution of wheat and rust pathogens.
Collapse
Affiliation(s)
- Emmanuel N Annan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| |
Collapse
|
17
|
Cloutier S, Reimer E, Khadka B, McCallum BD. Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1061490. [PMID: 36910459 PMCID: PMC9995823 DOI: 10.3389/fpls.2022.1061490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12. METHODS To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries. RESULTS The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci. DISCUSSION This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Elsa Reimer
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Bijendra Khadka
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
18
|
Kaur S, Gill HS, Breiland M, Kolmer JA, Gupta R, Sehgal SK, Gill U. Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1090163. [PMID: 36818858 PMCID: PMC9929074 DOI: 10.3389/fpls.2023.1090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - James A. Kolmer
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Rajeev Gupta
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, ND, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
19
|
Singh J, Chhabra B, Raza A, Yang SH, Sandhu KS. Important wheat diseases in the US and their management in the 21st century. FRONTIERS IN PLANT SCIENCE 2023; 13:1010191. [PMID: 36714765 PMCID: PMC9877539 DOI: 10.3389/fpls.2022.1010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Wheat is a crop of historical significance, as it marks the turning point of human civilization 10,000 years ago with its domestication. Due to the rapid increase in population, wheat production needs to be increased by 50% by 2050 and this growth will be mainly based on yield increases, as there is strong competition for scarce productive arable land from other sectors. This increasing demand can be further achieved using sustainable approaches including integrated disease pest management, adaption to warmer climates, less use of water resources and increased frequency of abiotic stress tolerances. Out of 200 diseases of wheat, 50 cause economic losses and are widely distributed. Each year, about 20% of wheat is lost due to diseases. Some major wheat diseases are rusts, smut, tan spot, spot blotch, fusarium head blight, common root rot, septoria blotch, powdery mildew, blast, and several viral, nematode, and bacterial diseases. These diseases badly impact the yield and cause mortality of the plants. This review focuses on important diseases of the wheat present in the United States, with comprehensive information of causal organism, economic damage, symptoms and host range, favorable conditions, and disease management strategies. Furthermore, major genetic and breeding efforts to control and manage these diseases are discussed. A detailed description of all the QTLs, genes reported and cloned for these diseases are provided in this review. This study will be of utmost importance to wheat breeding programs throughout the world to breed for resistance under changing environmental conditions.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seung Hwan Yang
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | | |
Collapse
|
20
|
Lhamo D, Sun Q, Zhang Q, Li X, Fiedler JD, Xia G, Faris JD, Gu YQ, Gill U, Cai X, Acevedo M, Xu SS. Genome-wide association analyses of leaf rust resistance in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:20. [PMID: 36683081 DOI: 10.1007/s00122-023-04281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Yong-Qiang Gu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum and Forage Research Unit, and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Maricelis Acevedo
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
21
|
Zhao R, Liu B, Wan W, Jiang Z, Chen T, Wang L, Bie T. Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:1. [PMID: 36645449 DOI: 10.1007/s00122-023-04270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.
Collapse
Affiliation(s)
- Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Bingliang Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225007, China
| | - Wentao Wan
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Zhengning Jiang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tiantian Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Ling Wang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China.
| |
Collapse
|
22
|
Sharma JS, McCartney CA, McCallum BD, Hiebert CW. Fine mapping and marker development for the wheat leaf rust resistance gene Lr32. G3 (BETHESDA, MD.) 2022; 13:6762863. [PMID: 36255270 PMCID: PMC9911047 DOI: 10.1093/g3journal/jkac274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Wheat leaf rust is caused by the fungal pathogen Puccinia triticina and is one of the wheat diseases of concern globally. Among the known leaf rust resistance genes (Lr) genes, Lr32 is a broadly effective gene derived from the diploid species Aegilops tauschii coss. accession RL5497-1 and has been genetically mapped to chromosome arm 3DS. However, Lr32 resistance has not been utilized in current cultivars in part due to the lack of modern, predictive DNA markers. The goals of this study were to fine map the Lr32 region and develop SNP-based kompetitive allele-specific polymerase chain reaction markers. The genomic analysis was conducted by using doubled haploid and F2-derived mapping populations. For marker development, a 90K wheat chip array, 35K and 820K Axiom R SNPs, A. tauschii pseudomolecules v4.0 and International Wheat Genome Sequencing Consortium ReqSeq v2.1 reference genomes were used. Total 28 kompetitive allele-specific polymerase chain reaction and 2 simple sequence repeat markers were developed. The Lr32 region was fine mapped between kompetitive allele-specific polymerase chain reaction markers Kwh142 and Kwh355 that flanked 34-35 Mb of the diploid and hexaploid reference genomes. Leaf rust resistance mapped as a Mendelian trait that cosegregated with 20 markers, recombination restriction limited the further resolution of the Lr32 region. A total of 10-11 candidate genes associated with disease resistance were identified between the flanking regions on both reference genomes, with the majority belonging to the nucleotide-binding domain and leucine-rich repeat gene family. The validation analysis selected 2 kompetitive allele-specific polymerase chain reaction markers, Kwh147 and Kwh722, for marker-assisted selection. The presence of Lr32 along with other Lr genes such as Lr67 and Lr34 would increase the resistance in future wheat breeding lines and have a high impact on controlling wheat leaf rust.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| | - Curt A McCartney
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| | - Colin W Hiebert
- Corresponding author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
23
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Mehnaz M, Dracatos PM, Dinh HX, Forrest K, Rouse MN, Park RF, Singh D. A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. FRONTIERS IN PLANT SCIENCE 2022; 13:980870. [PMID: 36275572 PMCID: PMC9583899 DOI: 10.3389/fpls.2022.980870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Barley leaf rust (BLR), caused by Puccinia hordei, is best controlled through genetic resistance. An efficient resistance breeding program prioritizes the need to identify, characterize, and map new sources of resistance as well as understanding the effectiveness, structure, and function of resistance genes. In this study, three mapping populations were developed by crossing Israelian barley lines "AGG-396," "AGG-397," and "AGG-403" (carrying unknown leaf rust resistance) with a susceptible variety "Gus" to characterize and map resistance. Genetic analysis of phenotypic data from rust testing F3s with a P. hordei pathotype 5457 P+ revealed monogenic inheritance in all three populations. Targeted genotyping-by-sequencing of the three populations detected marker trait associations in the same genomic region on the short arm of chromosome 2H between 39 and 57 Mb (AGG-396/Gus), 44 and 64 Mb (AGG-397/Gus), and 31 and 58 Mb (AGG-403/Gus), suggesting that the resistance in all three lines is likely conferred by the same locus (tentatively designated RphAGG396). Two Kompetitive allele-specific PCR (KASP) markers, HvGBSv2-902 and HvGBSv2-932, defined a genetic distance of 3.8 cM proximal and 7.1 cM distal to RphAGG396, respectively. To increase the marker density at the RphAGG396 locus, 75 CAPS markers were designed between two flanking markers. Integration of marker data resulted in the identification of two critical recombinants and mapping RphAGG396 between markers- Mloc-28 (40.75 Mb) and Mloc-41 (41.92 Mb) narrowing the physical window to 1.17 Mb based on the Morex v2.0 reference genome assembly. To enhance map resolution, 600 F2s were genotyped with markers- Mloc-28 and Mloc-41 and nine recombinants were identified, placing the gene at a genetic distance of 0.5 and 0.2 cM between the two markers, respectively. Two annotated NLR (nucleotide-binding domain leucine-rich repeat) genes (r2.2HG0093020 and r2.2HG0093030) were identified as the best candidates for RphAGG396. A closely linked marker was developed for RphAGG396 that can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Mehnaz Mehnaz
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Peter M. Dracatos
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Bundoora, VIC, Australia
| | - Hoan X. Dinh
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew N. Rouse
- USDA-ARS Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Robert F. Park
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Tyagi S, Jha SK, Kumar A, Saripalli G, Bhurta R, Hurali DT, Sathee L, Mallick N, Mir RR, Chinnusamy V. Genome-wide characterization and identification of cyclophilin genes associated with leaf rust resistance in bread wheat (Triticum aestivum L.). Front Genet 2022; 13:972474. [PMID: 36246582 PMCID: PMC9561851 DOI: 10.3389/fgene.2022.972474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophilins (CYPs) are a group of highly conserved proteins involved in host-pathogen interactions in diverse plant species. However, the role of CYPs during disease resistance in wheat remains largely elusive. In the present study, the systematic genome-wide survey revealed a set of 81 TaCYP genes from three subfamilies (GI, GII, and GIII) distributed on all 21 wheat chromosomes. The gene structures of TaCYP members were found to be highly variable, with 1–14 exons/introns and 15 conserved motifs. A network of miRNA targets with TaCYPs demonstrated that TaCYPs were targeted by multiple miRNAs and vice versa. Expression profiling was done in leaf rust susceptible Chinese spring (CS) and the CS-Ae. Umbellulata derived resistant IL “Transfer (TR). Three homoeologous TaCYP genes (TaCYP24, TaCYP31, and TaCYP36) showed high expression and three homoeologous TaCYP genes (TaCYP44, TaCYP49, and TaCYP54) showed low expression in TR relative to Chinese Spring. Most of the other TaCYPs showed comparable expression changes (down- or upregulation) in both contrasting TR and CS. Expression of 16 TaCYPs showed significant association (p < 0.05) with superoxide radical and hydrogen peroxide abundance, suggesting the role of TaCYPs in downstream signaling processes during wheat-leaf rust interaction. The differentially expressing TaCYPs may be potential targets for future validation using transgenic (overexpression, RNAi or CRISPR-CAS) approaches and for the development of leaf rust-resistant wheat genotypes.
Collapse
Affiliation(s)
- Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shailendra Kumar Jha, ; Vinod,
| | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ramesh Bhurta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Deepak T. Hurali
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Wadura Campus, Srinagar, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
26
|
Sheng D, Qiao L, Zhang X, Li X, Chang L, Guo H, Zhang S, Chen F, Chang Z. Fine mapping of a recessive leaf rust resistance locus on chromosome 2BS in wheat accession CH1539. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:52. [PMID: 37313422 PMCID: PMC10248610 DOI: 10.1007/s11032-022-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust (LR), caused by Puccinia triticina (Pt), is one of the most important fungal diseases of wheat worldwide. The wheat accession CH1539 showed a high level of resistance to leaf rust. A mapping population of 184 recombinant inbred lines (RILs) was developed from a cross between the resistant accession CH1539 and the susceptible cultivar SY95-71. The RILs showed segregating infection responses to Puccinia triticina Eriks. (Pt) race THK at the seedling stage. Genetic analysis showed that leaf rust resistance was controlled by a monogenic gene, and the potential locus was temporarily named LrCH1539. Bulked segregant analysis (BSA) using a 35 K DArTseq array located LrCH1539 on the short arm of chromosome 2B. Subsequently, a genetic linkage map of LrCH1539 was constructed using the developed 2BS chromosome-specific markers, and its flanking markers were sxau-2BS136 and sxau-2BS81. An F2 subpopulation with 3619 lines was constructed by crossing the resistant and susceptible lines selected from the RIL population. The inoculation identification results showed that LrCH1539 was recessively inherited and was fine-mapped to a 779.4-kb region between markers sxau-2BS47 and sxau-2BS255 at the end of 2BS. The linkage marker analysis showed that the positions of LrCH1539 and Lr16 were the same, but the identification results of the resistance spectrum indicated that the causal genes of the two might be different. The resistant materials reported in this study and the cosegregation marker can be used for marker-assisted selection breeding of leaf rust-resistant wheat cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01318-4.
Collapse
Affiliation(s)
- Dece Sheng
- College of Life Science, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Linyi Qiao
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Xin Li
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Lifang Chang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Huijuan Guo
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Shuwei Zhang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Fang Chen
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Zhijian Chang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| |
Collapse
|
27
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
28
|
Ji X, Liu T, Xu S, Wang Z, Han H, Zhou S, Guo B, Zhang J, Yang X, Li X, Li L, Liu W. Comparative Transcriptome Analysis Reveals the Gene Expression and Regulatory Characteristics of Broad-Spectrum Immunity to Leaf Rust in a Wheat- Agropyron cristatum 2P Addition Line. Int J Mol Sci 2022; 23:7370. [PMID: 35806373 PMCID: PMC9266861 DOI: 10.3390/ijms23137370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Xiajie Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Shirui Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Zongyao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Baojin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| |
Collapse
|
29
|
Lin G, Chen H, Tian B, Sehgal SK, Singh L, Xie J, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai G, Gill B, Liu S. Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat Commun 2022; 13:3044. [PMID: 35650212 PMCID: PMC9160033 DOI: 10.1038/s41467-022-30784-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.
Collapse
Affiliation(s)
- Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Syngenta Crop Protection, Research Triangle Park, Durham, NC, 27709, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57006, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Jingzhong Xie
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico.,Borlaug Institute for South Asia, Ludhiana, India
| | - Narinder Singh
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Bayer R&D Services LLC, Kansas City, MO, 64153, USA
| | - Sandesh Shrestha
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Duane L Wilson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hannah Shult
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hyeonju Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Adam William Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Mary J Guttieri
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-5502, USA.,Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Bikram Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
30
|
Dinh HX, Singh D, Gomez de la Cruz D, Hensel G, Kumlehn J, Mascher M, Stein N, Perovic D, Ayliffe M, Moscou MJ, Park RF, Pourkheirandish M. The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nat Commun 2022; 13:2386. [PMID: 35501307 PMCID: PMC9061838 DOI: 10.1038/s41467-022-29840-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 04/03/2022] [Indexed: 01/04/2023] Open
Abstract
Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique predicted transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. The Rph3 gene was expressed only in interactions with Rph3-avirulent P. hordei isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like known transmembrane executors such as Bs3 and Xa7, heterologous expression of Rph3 in N. benthamiana induced a cell death response. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots. Leaf rust is an economically significant disease of barley. Here the authors describe cloning of the barley Rph3 leaf rust resistance gene and reveal it encodes a predicted transmembrane protein that is expressed upon infection by Rph3-avirulent Puccinia hordei isolates.
Collapse
|
31
|
Kumar K, Jan I, Saripalli G, Sharma PK, Mir RR, Balyan HS, Gupta PK. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front Genet 2022; 13:816057. [PMID: 35432483 PMCID: PMC9008719 DOI: 10.3389/fgene.2022.816057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. The production and productivity of wheat is adversely affected by several diseases including leaf rust, which can cause yield losses, sometimes approaching >50%. In the present mini-review, we provide updated information on (i) all Lr genes including those derived from alien sources and 14 other novel resistance genes; (ii) a list of QTLs identified using interval mapping and MTAs identified using GWAS (particular those reported recently i.e., after 2018) and their association with known Lr genes; (iii) introgression/pyramiding of individual Lr genes in commercial/prominent cultivars from 18 different countries including India. Challenges and future perspectives of breeding for leaf rust resistance are also provided at the end of this mini-review. We believe that the information in this review will prove useful for wheat geneticists/breeders, not only in the development of leaf rust-resistant wheat cultivars, but also in the study of molecular mechanism of leaf rust resistance in wheat.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- *Correspondence: P. K. Gupta, ,
| |
Collapse
|
32
|
QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. J Appl Genet 2022; 63:265-279. [PMID: 35338429 PMCID: PMC8979893 DOI: 10.1007/s13353-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/02/2022]
Abstract
Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.
Collapse
|
33
|
Bouvet L, Holdgate S, James L, Thomas J, Mackay IJ, Cockram J. The evolving battle between yellow rust and wheat: implications for global food security. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:741-753. [PMID: 34821981 PMCID: PMC8942934 DOI: 10.1007/s00122-021-03983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.
Collapse
Affiliation(s)
- Laura Bouvet
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sarah Holdgate
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Lucy James
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jane Thomas
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
34
|
Dong Y, Xu D, Xu X, Ren Y, Gao F, Song J, Jia A, Hao Y, He Z, Xia X. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1083-1099. [PMID: 35006334 DOI: 10.1007/s00122-021-04019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A stable QTL QPm.caas-3BS for adult-plant resistance to powdery mildew was mapped in an interval of 431 kb, and candidate genes were predicted based on gene sequences and expression profiles. Powdery mildew is a devastating foliar disease occurring in most wheat-growing areas. Characterization and fine mapping of genes for powdery mildew resistance can benefit marker-assisted breeding. We previously identified a stable quantitative trait locus (QTL) QPm.caas-3BS for adult-plant resistance to powdery mildew in a recombinant inbred line population of Zhou8425B/Chinese Spring by phenotyping across four environments. Using 11 heterozygous recombinants and high-density molecular markers, QPm.caas-3BS was delimited in a physical interval of approximately 3.91 Mb. Based on re-sequenced data and expression profiles, three genes TraesCS3B02G014800, TraesCS3B02G016800 and TraesCS3B02G019900 were associated with the powdery mildew resistance locus. Three gene-specific kompetitive allele-specific PCR (KASP) markers were developed from these genes and validated in the Zhou8425B derivatives and Zhou8425B/Chinese Spring population in which the resistance gene was mapped to a 0.3 cM interval flanked by KASP14800 and snp_50465, corresponding to a 431 kb region at the distal end of chromosome 3BS. Within the interval, TraesCS3B02G014800 was the most likely candidate gene for QPm.caas-3BS, but TraesCS3B02G016300 and TraesCS3B02G016400 were less likely candidates based on gene annotations and sequence variation between the parents. These results not only offer high-throughput KASP markers for improvement of powdery mildew resistance but also pave the way to map-based cloning of the resistance gene.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaowan Xu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Ren
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan, China
| | - Fengmei Gao
- Institute of Crop Germplasm Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Aolin Jia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
35
|
Xu S, Ji X, Sun S, Han H, Zhang J, Zhou S, Yang X, Li X, Li L, Liu W. Production of new wheat- A. cristatum translocation lines with modified chromosome 2P coding for powdery mildew and leaf rust resistance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:14. [PMID: 37309409 PMCID: PMC10248630 DOI: 10.1007/s11032-022-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a relative of wheat, carries desirable genes associated with high yield, disease resistance, and stress resistance, which is an important resource for wheat genetic improvement. The long arm of A. cristatum chromosome 2P carries favorable genes conferring powdery mildew and leaf rust resistance, and two wheat-A. cristatum 2P translocation lines, 2PT3 and 2PT5, with a large segment of 2P chromatin were obtained. In this study, 2PT3 and 2PT5 translocation lines with powdery mildew and leaf rust resistance genes were used to induce translocations of different chromosomal sizes via ionizing radiation. According to cytological characterization, 10 of those plants were new wheat-A. cristatum 2P small-chromosome segment translocation lines with reduced 2P chromatin, and 6 plants represented introgression lines without visible 2P chromosomal fragments. Moreover, four lines were resistant to both powdery mildew and leaf rust, while two lines were resistant only to leaf rust.
Collapse
Affiliation(s)
- Shirui Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiajie Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
36
|
Wang J, Li Y, Xu F, Xu H, Han Z, Liu L, Song Y. Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC PLANT BIOLOGY 2022; 22:83. [PMID: 35196978 PMCID: PMC8864798 DOI: 10.1186/s12870-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease affecting wheat production. Planting resistant cultivars is an effective, safe, and economical method to control the disease. Map construction using next-generation sequencing facilitates gene cloning based on genetic maps and high-throughput gene expression studies. In this study, specific-locus amplified fragment sequencing (SLAF) was used to analyze Huixianhong (female parent), Hongyoumai (male parent) and two bulks (50 homozygous resistant and 50 susceptible F2:3 segregating population derived from Huixianhong × Hongyoumai to determine a candidate gene region for resistance to powdery mildew on the long arm of chromosome 7B in wheat landrace Hongyoumai. Gene expressions of candidate regions were obtained using bulked segregant RNA-seq in 10 homozygous resistant and 10 susceptible progeny inoculated by Bgt.. Candidate genes were obtained using homology-based cloning in two parents. RESULTS A 12.95 Mb long candidate region in chromosome 7BL was identified, and five blocks in SLAF matched the scaffold of the existing co-segregation marker Xmp1207. In the candidate region, 39 differentially expressed genes were identified using RNA-seq, including RGA4 (Wheat_Chr_Trans_newGene_16173)-a disease resistance protein whose expression was upregulated in the resistant pool at 16 h post inoculation with Bgt. Quantitative reverse transcription (qRT)-PCR was used to further verify the expression patterns in Wheat_Chr_Trans_newGene_16173 that were significantly different in the two parents Hongyoumai and Huixianhong. Two RGA4 genes were cloned based on the sequence of Wheat_Chr_Trans_newGene_16173, respectively from two parent and there was one amino acid mutation: S to G in Huixianhong on 510 loci. CONCLUSION The combination of SLAF and BSR-seq methods identified a candidate region of pmHYM in the chromosome 7BL of wheat landrace cultivar Hongyoumai. Comparative analysis between the scaffold of co-segregating marker Xmp1207 and SLAF-seq showed five matching blocks. qRT-PCR showed that only the resistant gene Wheat_Chr_Trans_newGene_16173 was significantly upregulated in the resistant parent Hongyoumai after inoculation with Bgt, and gene cloning revealed a difference in one amino acid between the two parent genes, indicating it was involved in the resistance response and may be the candidate resistance gene pmHYM.
Collapse
Affiliation(s)
- Junmei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yahong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Fei Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zihang Han
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Lulu Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yuli Song
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China.
| |
Collapse
|
37
|
Dorostkar S, Dadkhodaie A, Ebrahimie E, Heidari B, Ahmadi-Kordshooli M. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Sci Rep 2022; 12:821. [PMID: 35039525 PMCID: PMC8764039 DOI: 10.1038/s41598-021-04329-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.
Collapse
Affiliation(s)
- Saeideh Dorostkar
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
38
|
Discovery of a Novel Leaf Rust ( Puccinia recondita) Resistance Gene in Rye ( Secale cereale L.) Using Association Genomics. Cells 2021; 11:cells11010064. [PMID: 35011626 PMCID: PMC8750363 DOI: 10.3390/cells11010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.
Collapse
|
39
|
Genome-Wide Association Mapping of Crown and Brown Rust Resistance in Perennial Ryegrass. Genes (Basel) 2021; 13:genes13010020. [PMID: 35052360 PMCID: PMC8774571 DOI: 10.3390/genes13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
A population of 239 perennial ryegrass (Lolium perenne L.) genotypes was analyzed to identify marker-trait associations for crown rust (Puccinia coronata f. sp. lolii) and brown rust (Puccinia graminis f. sp. loliina) resistance. Phenotypic data from field trials showed a low correlation (r = 0.17) between the two traits. Genotypes were resequenced, and a total of 14,538,978 SNPs were used to analyze population structure, linkage disequilibrium (LD), and for genome-wide association study. The SNP heritability (h2SNP) was 0.4 and 0.8 for crown and brown rust resistance, respectively. The high-density SNP dataset allowed us to estimate LD decay with the highest possible precision to date for perennial ryegrass. Results showed a low LD extension with a rapid decay of r2 value below 0.2 after 520 bp on average. Additionally, QTL regions for both traits were detected, as well as candidate genes by applying Genome Complex Trait Analysis and Multi-marker Analysis of GenoMic Annotation. Moreover, two significant genes, LpPc6 and LpPl6, were identified for crown and brown rust resistance, respectively, when SNPs were aggregated to the gene level. The two candidate genes encode proteins with phosphatase activity, which putatively can be induced by the host to perceive, amplify and transfer signals to downstream components, thus activating a plant defense response.
Collapse
|
40
|
Dmochowska-Boguta M, Kloc Y, Orczyk W. Polyamine Oxidation Is Indispensable for Wheat (Triticum aestivum L.) Oxidative Response and Necrotic Reactions during Leaf Rust (Puccinia triticina Eriks.) Infection. PLANTS 2021; 10:plants10122787. [PMID: 34961257 PMCID: PMC8703351 DOI: 10.3390/plants10122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes’ activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.
Collapse
|
41
|
Jin Y, Shi F, Liu W, Fu X, Gu T, Han G, Shi Z, Sheng Y, Xu H, Li L, An D. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. PLANT DISEASE 2021; 105:3900-3908. [PMID: 34129353 DOI: 10.1094/pdis-03-21-0532-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.
Collapse
Affiliation(s)
- Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihua Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. BIOLOGY 2021; 10:biology10111168. [PMID: 34827161 PMCID: PMC8615195 DOI: 10.3390/biology10111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Wheat leaf rust is one of the most significant diseases worldwide, incited by a parasitic fungus which infects leaves, affecting grain yield. This pathogen is spread by the wind over large areas through microscopic spores. This huge number of spores favors the selection of virulent forms; therefore, there is a continuous need for new resistance genes to control this disease without fungicides. These resistant genes are naturally found in resistant wheat varieties and can be introduced by standard crosses. In this work, seven resistant genes were introduced into several commercial susceptible varieties. The selection of resistance genes was assisted by DNA markers that are close to these genes on the chromosome. Additionally, the selection of desirable traits from the commercial variety was also assisted by DNA markers to accelerate the process. In field testing, the varieties developed here were resistant to leaf rust, and suitable for commercial use. Abstract Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.
Collapse
|
43
|
Pang Y, Wu Y, Liu C, Li W, St Amand P, Bernardo A, Wang D, Dong L, Yuan X, Zhang H, Zhao M, Li L, Wang L, He F, Liang Y, Yan Q, Lu Y, Su Y, Jiang H, Wu J, Li A, Kong L, Bai G, Liu S. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2857-2873. [PMID: 34075443 DOI: 10.1007/s00122-021-03863-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Paul St Amand
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xiufang Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Huirui Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liming Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Fang He
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yunlong Liang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang Yan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Lu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yu Su
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongming Jiang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
44
|
Sánchez-Martín J, Keller B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102053. [PMID: 34052730 DOI: 10.1016/j.pbi.2021.102053] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques has accelerated the identification of race-specific resistance (R) genes and their corresponding avirulence (Avr) genes in wheat, barley, rye, and their wild relatives. Here, we describe the growing repertoire of identified R and Avr genes with special emphasis on novel R gene architectures, revealing that there is a large diversity of proteins encoded by race-specific resistance genes that extends beyond the canonical nucleotide-binding domain leucine-rich repeat proteins. Immune receptors with unique domain architectures controlling race-specific resistance possibly reveal novel aspects on the biology of host-pathogen interactions. We conclude that the polyploid cereal genomes have a large evolutionary potential to generate diverse types of resistance genes.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
45
|
Atia MAM, El-Khateeb EA, Abd El-Maksoud RM, Abou-Zeid MA, Salah A, Abdel-Hamid AME. Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2021; 10:1378. [PMID: 34371581 PMCID: PMC8309345 DOI: 10.3390/plants10071378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity's food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.
Collapse
Affiliation(s)
- Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Eman A. El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Reem M. Abd El-Maksoud
- Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Arwa Salah
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt;
| |
Collapse
|
46
|
Zhang J, Hewitt TC, Boshoff WHP, Dundas I, Upadhyaya N, Li J, Patpour M, Chandramohan S, Pretorius ZA, Hovmøller M, Schnippenkoetter W, Park RF, Mago R, Periyannan S, Bhatt D, Hoxha S, Chakraborty S, Luo M, Dodds P, Steuernagel B, Wulff BBH, Ayliffe M, McIntosh RA, Zhang P, Lagudah ES. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat Commun 2021; 12:3378. [PMID: 34099713 PMCID: PMC8184838 DOI: 10.1038/s41467-021-23738-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
The re-emergence of stem rust on wheat in Europe and Africa is reinforcing the ongoing need for durable resistance gene deployment. Here, we isolate from wheat, Sr26 and Sr61, with both genes independently introduced as alien chromosome introgressions from tall wheat grass (Thinopyrum ponticum). Mutational genomics and targeted exome capture identify Sr26 and Sr61 as separate single genes that encode unrelated (34.8%) nucleotide binding site leucine rich repeat proteins. Sr26 and Sr61 are each validated by transgenic complementation using endogenous and/or heterologous promoter sequences. Sr61 orthologs are absent from current Thinopyrum elongatum and wheat pan genome sequences, contrasting with Sr26 where homologues are present. Using gene-specific markers, we validate the presence of both genes on a single recombinant alien segment developed in wheat. The co-location of these genes on a small non-recombinogenic segment simplifies their deployment as a gene stack and potentially enhances their resistance durability. The tall wheat grass-derived stem rust resistance genes Sr26 and Sr61 are among a few ones that are effective to all current dominant races of stem rust, including Ug99. Here, the authors show that the two genes are present in a small non-recombinogenic segment but encode two unrelated NLR proteins.
Collapse
Affiliation(s)
- Jianping Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia.,CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Timothy C Hewitt
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia.,CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Ian Dundas
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | | | | | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Rohit Mago
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | | | - Dhara Bhatt
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Sami Hoxha
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | | | - Ming Luo
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | | | | | | | - Robert A McIntosh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia.
| | - Evans S Lagudah
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia. .,CSIRO Agriculture & Food, Canberra, ACT, Australia.
| |
Collapse
|
47
|
Shi G, Hao M, Tian B, Cao G, Wei F, Xie Z. A Methodological Advance of Tobacco Rattle Virus-Induced Gene Silencing for Functional Genomics in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671091. [PMID: 34149770 PMCID: PMC8212136 DOI: 10.3389/fpls.2021.671091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
As a promising high-throughput reverse genetic tool in plants, virus-induced gene silencing (VIGS) has already begun to fulfill some of this promise in diverse aspects. However, review of the technological advancements about widely used VIGS system, tobacco rattle virus (TRV)-mediated gene silencing, needs timely updates. Hence, this article mainly reviews viral vector construction, inoculation method advances, important influential factors, and summarizes the recent applications in diverse plant species, thus providing a better understanding and advice for functional gene analysis related to crop improvements.
Collapse
Affiliation(s)
- Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Desiderio F, Bourras S, Mazzucotelli E, Rubiales D, Keller B, Cattivelli L, Valè G. Characterization of the Resistance to Powdery Mildew and Leaf Rust Carried by the Bread Wheat Cultivar Victo. Int J Mol Sci 2021; 22:ijms22063109. [PMID: 33803699 PMCID: PMC8003046 DOI: 10.3390/ijms22063109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
Leaf rust and powdery mildew are two important foliar diseases in wheat. A recombinant inbred line (RIL) population, obtained by crossing two bread wheat cultivars (‘Victo’ and ‘Spada’), was evaluated for resistance to the two pathogens at seedling stage. Upon developing a genetic map of 8726 SNP loci, linkage analysis identified three resistance Quantitative Trait Loci (QTLs), with ‘Victo’ contributing the resistant alleles to all loci. One major QTL (QPm.gb-7A) was detected in response to Blumeria graminis on chromosome 7A, which explained 90% of phenotypic variation (PV). The co-positional relationship with known powdery mildew (Pm) resistance loci suggested that a new source of resistance was identified in T. aestivum. Two QTLs were detected in response to Puccinia triticina: a major gene on chromosome 5D (QLr.gb-5D), explaining a total PV of about 59%, and a minor QTL on chromosome 2B (QLr.gb-2B). A positional relationship was observed between the QLr.gb-5D with the known Lr1 gene, but polymorphisms were found between the cloned Lr1 and the corresponding ‘Victo’ allele, suggesting that QLr.gb-5D could represent a new functional Lr1 allele. Lastly, upon anchoring the QTL on the T. aestivum reference genome, candidate genes were hypothesized on the basis of gene annotation and in silico gene expression analysis.
Collapse
Affiliation(s)
- Francesca Desiderio
- CREA Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy; (E.M.); (L.C.)
- Correspondence: ; Tel.: +39-0523-983758
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland; (S.B.); (B.K.)
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Elisabetta Mazzucotelli
- CREA Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy; (E.M.); (L.C.)
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain;
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland; (S.B.); (B.K.)
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy; (E.M.); (L.C.)
| | - Giampiero Valè
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 13100 Vercelli, Italy;
| |
Collapse
|
49
|
Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K, Verma H, Forrest KL, Trethowan RM, Bariana HS, Bansal UK. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:849-858. [PMID: 33388887 DOI: 10.1007/s00122-020-03735-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust. Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.
Collapse
Affiliation(s)
- Subodh Kumar
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Subhash C Bhardwaj
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India.
| | - Om P Gangwar
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Akanksha Sharma
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Naeela Qureshi
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Vikas V Kumaran
- Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute Regional Station, Wellington, Nilgiris, Tamil Nadu, 643231, India
| | - Hanif Khan
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Pramod Prasad
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Hanif Miah
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Gyanendra P Singh
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Kiran Sharma
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Hemlata Verma
- Indian Council of Agricultural Research (ICAR), Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Kerrie L Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Richard M Trethowan
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia
| | - Harbans S Bariana
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia.
| | - Urmil K Bansal
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, Sydney, NSW, 2570, Australia.
| |
Collapse
|
50
|
Liu F, Jiang Y, Zhao Y, Schulthess AW, Reif JC. Haplotype-based genome-wide association increases the predictability of leaf rust (Puccinia triticina) resistance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6958-6968. [PMID: 32827041 DOI: 10.1093/jxb/eraa387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 05/12/2023]
Abstract
Resistance breeding is crucial for sustainable control of wheat leaf rust and single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) are widely used to dissect leaf rust resistance. Unfortunately, GWAS based on SNPs often explained only a small proportion of the genetic variation. We compared SNP-based GWAS with a method based on functional haplotypes (FH) considering epistasis in a comprehensive hybrid wheat mapping population composed of 133 parents plus their 1574 hybrids and characterized with 626 245 high-quality SNPs. In total, 2408 and 1 139 828 significant associations were detected in the mapping population by using SNP-based and FH-based GWAS, respectively. These associations mapped to 25 and 69 candidate regions, correspondingly. SNP-based GWAS highlighted two already-known resistance genes, Lr22a and Lr34-B, while FH-based GWAS detected associations not only on these genes but also on two additional genes, Lr10 and Lr1. As revealed by a second hybrid wheat population for independent validation, the use of detected associations from SNP-based and FH-based GWAS reached predictabilities of 11.72% and 22.86%, respectively. Therefore, FH-based GWAS is not only more powerful for detecting associations, but also improves the accuracy of marker-assisted selection compared with the SNP-based approach.
Collapse
Affiliation(s)
- Fang Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Yong Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Albert W Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| |
Collapse
|