1
|
Yu L, Zhang H, Guan R, Li Y, Guo Y, Qiu L. Genome-Wide Tissue-Specific Genes Identification for Novel Tissue-Specific Promoters Discovery in Soybean. Genes (Basel) 2023; 14:1150. [PMID: 37372330 DOI: 10.3390/genes14061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Promoters play a crucial role in controlling the spatial and temporal expression of genes at transcriptional levels in the process of higher plant growth and development. The spatial, efficient, and correct regulation of exogenous genes expression, as desired, is the key point in plant genetic engineering research. Constitutive promoters widely used in plant genetic transformation are limited because, sometimes, they may cause potential negative effects. This issue can be solved, to a certain extent, by using tissue-specific promoters. Compared with constitutive promoters, a few tissue-specific promoters have been isolated and applied. In this study, based on the transcriptome data, a total of 288 tissue-specific genes were collected, expressed in seven tissues, including the leaves, stems, flowers, pods, seeds, roots, and nodules of soybean (Glycine max). KEGG pathway enrichment analysis was carried out, and 52 metabolites were annotated. A total of 12 tissue-specific genes were selected via the transcription expression level and validated through real-time quantitative PCR, of which 10 genes showed tissue-specific expression. The 3-kb 5' upstream regions of ten genes were obtained as putative promoters. Further analysis showed that all the 10 promoters contained many tissue-specific cis-elements. These results demonstrate that high-throughput transcriptional data can be used as effective tools, providing a guide for high-throughput novel tissue-specific promoter discovery.
Collapse
Affiliation(s)
- Lili Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Wang Y, Wang T, Liu L. The rice VCS1 is identified as a molecular tool to mark and visualize the vegetative cell of pollen. PLANT SIGNALING & BEHAVIOR 2021; 16:1924502. [PMID: 33982648 PMCID: PMC8244767 DOI: 10.1080/15592324.2021.1924502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Cell-type-specific markers are valuable tools to reveal developmental processes underlying cell differentiation during plant reproduction. Here we report the pollen vegetative cell marker gene VCS1 (Vegetative Cell Specific 1) of rice (Oryza sativa japonica). VCS1 was expressed specifically in late pollen and was predicted to encode a small FAF domain-containing protein of 205 amino acid residues (aa). The expression of reporter fusion proteins showed that VCS1 was exclusively targeted to the vegetative nucleus of pollen. Upon pollen germination, VCS1 lost vegetative nucleus localization, and appeared diffused in the vegetative cytoplasm of pollen grain but not in the pollen tube. T-DNA insertional mutation which disrupted the carboxyl-terminal 21 aa of VCS1 did not affect plant vegetative growth and pollen development, while destruction of VCS1 by CRISPR/Cas9 only moderately affect pollen viability. VCS1 is evolutionally conserved in monocots but appeared absent in dicotyledons. This study reveals a molecular tool for visualizing the vegetative cell of rice and possible other monocots, which has potential values in the genetic engineering of male-sterile lines.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. Int J Mol Sci 2021; 22:ijms22136877. [PMID: 34206810 PMCID: PMC8267723 DOI: 10.3390/ijms22136877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.
Collapse
|
4
|
Newhouse AE, Allwine AE, Oakes AD, Matthews DF, McArt SH, Powell WA. Bumble bee (Bombus impatiens) survival, pollen usage, and reproduction are not affected by oxalate oxidase at realistic concentrations in American chestnut (Castanea dentata) pollen. Transgenic Res 2021; 30:751-764. [PMID: 34110572 PMCID: PMC8580921 DOI: 10.1007/s11248-021-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/29/2021] [Indexed: 12/04/2022]
Abstract
Transgenic American chestnut trees expressing a wheat gene for oxalate oxidase (OxO) can tolerate chestnut blight, but as with any new restoration material, they should be carefully evaluated before being released into the environment. Native pollinators such as bumble bees are of particular interest: Bombus impatiens use pollen for both a source of nutrition and a hive building material. Bees are regular visitors to American chestnut flowers and likely contribute to their pollination, so depending on transgene expression in chestnut pollen, they could be exposed to this novel source of OxO during potential restoration efforts. To evaluate the potential risk to bees from OxO exposure, queenless microcolonies of bumble bees were supplied with American chestnut pollen containing one of two concentrations of OxO, or a no-OxO control. Bees in microcolonies exposed to a conservatively estimated field-realistic concentration of OxO in pollen performed similarly to no-OxO controls; there were no significant differences in survival, bee size, pollen use, hive construction activity, or reproduction. A ten-fold increase in OxO concentration resulted in noticeable but non-significant decreases in some measures of pollen usage and reproduction compared to the no-OxO control. These effects are similar to what is often seen when naturally produced secondary metabolites are supplied to bees at unrealistically high concentrations. Along with the presence of OxO in many other environmental sources, these data collectively suggest that oxalate oxidase at field-realistic concentrations in American chestnut pollen is unlikely to present substantial risk to bumble bees.
Collapse
Affiliation(s)
- Andrew E Newhouse
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| | - Anastasia E Allwine
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Allison D Oakes
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Dakota F Matthews
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, 2130 Comstock Hall, Ithaca, NY, 14853, USA
| | - William A Powell
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| |
Collapse
|
5
|
Wang M, Yan W, Peng X, Chen Z, Xu C, Wu J, Deng XW, Tang X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1246-1263. [PMID: 31965735 DOI: 10.1111/jipb.12912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.
Collapse
Affiliation(s)
- Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
6
|
Li D, Xu R, Lv D, Zhang C, Yang H, Zhang J, Wen J, Li C, Tan X. Identification of the Core Pollen-Specific Regulation in the Rice OsSUT3 Promoter. Int J Mol Sci 2020; 21:ijms21061909. [PMID: 32168778 PMCID: PMC7139308 DOI: 10.3390/ijms21061909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/02/2023] Open
Abstract
The regulatory mechanisms of pollen development have potential value for applications in agriculture, such as better understanding plant reproductive regularity. Pollen-specific promoters are of vital importance for the ectopic expression of functional genes associated with pollen development in plants. However, there is a limited number of successful applications using pollen-specific promoters in genetic engineering for crop breeding and hybrid generation. Our previous work led to the identification and isolation of the OsSUT3 promoter from rice. In this study, to analyze the effects of different putative regulatory motifs in the OsSUT3 promoter, a series of promoter deletions were fused to a GUS reporter gene and then stably introduced into rice and Arabidopsis. Histochemical GUS analysis of transgenic plants revealed that p385 (from -385 to -1) specifically mediated maximal GUS expression in pollen tissues. The S region (from -385 to -203) was the key region for controlling the pollen-specific expression of a downstream gene. The E1 (-967 to -606), E2 (-202 to -120), and E3 (-119 to -1) regions enhanced ectopic promoter activity to different degrees. Moreover, the p385 promoter could alter the expression pattern of the 35S promoter and improve its activity when they were fused together. In summary, the p385 promoter, a short and high-activity promoter, can function to drive pollen-specific expression of transgenes in monocotyledon and dicotyledon transformation experiments.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- Post-Doctoral Research Station of Plant Protection as first class discipline, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Rucong Xu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dong Lv
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Chunlong Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Hong Yang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jianbo Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- Post-Doctoral Research Station of Plant Protection as first class discipline, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- Correspondence: (C.L.); (X.T.); Tel.: +86-0871-6522-7552 (C.L.); +86-0871-6522-7063 (X.T.)
| | - Xuelin Tan
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- Yunnan Engineering Research Center for Japonica Hybrid Rice, Kunming 650201, Yunnan, China
- Correspondence: (C.L.); (X.T.); Tel.: +86-0871-6522-7552 (C.L.); +86-0871-6522-7063 (X.T.)
| |
Collapse
|
7
|
Chang Y, Yan M, Yu J, Zhu D, Zhao Q. The 5' untranslated region of potato SBgLR gene contributes to pollen-specific expression. PLANTA 2017; 246:389-403. [PMID: 28444448 DOI: 10.1007/s00425-017-2695-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION The 5'UTR of SBgLR enhances gene expression by regulating both its transcription and translation. SBgLR (Solanum tuberosum genomic lysine rich) is a pollen-specific gene in Solanum tuberosum that encodes a microtubule-associated protein. The region from -85 to +180 (transcription start site at +1) was determined to be critical for specific expression in pollen grains. Transient and stable expression assays showed that the 5'UTR (from +1 to +184) enhanced gene expression in all detected tissues of transgenic tobacco. Deletion analysis demonstrated that the secondary structure of the 5'UTR had no effect on pollen-specific SBgLR expression, while the region from +31 to +60 was crucial. Further investigation indicated that mRNA expression was slightly decreased when the +31 to +60 region was deleted, but the mRNA decay rate remained unchanged. Mutation analysis also confirmed that the pollen-specific element TTTCT, located at +37, played an important role in pollen-specific expression. Using yeast one-hybrid screening, we isolated a DNA-binding with one finger (Dof) protein gene (StDof23) and an AT-hook motif nuclear-localized (AHL) protein gene (StAHL) from potato pollen. Further investigation indicated that StDof23 interacted with and positively regulated the +31 to +60 region; moreover, StAHL interacted with and negatively regulated the -49 to +60 region. These results demonstrate that the 5'UTR not only enhanced gene expression but also altered the tissue-specific expression pattern by regulating both transcription and translation.
Collapse
Affiliation(s)
- Yujie Chang
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Min Yan
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- , Building C, Block 88 Kechuang 6th Street Yizhuang Biomedical Park, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China.
| |
Collapse
|