1
|
Wang Y, Chen L, Yang Q, Hu Z, Guo P, Xie Q, Chen G. New insight into the pigment composition and molecular mechanism of flower coloration in tulip (Tulipa gesneriana L.) cultivars with various petal colors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111193. [PMID: 35193742 DOI: 10.1016/j.plantsci.2022.111193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Pigmentation of various components leads to different colors in tulip flowers. To understand the molecular basis of the petal coloration in tulip, integrative analyses of the pigment components and transcriptome profiles were conducted on four tulip cultivars with different petal colors. A total of four major anthocyanins and 46 carotenoids were identified. The anthocyanin cyanidin 3-O-galactoside showed markedly higher abundances in the B cultivar than in the other varieties, and among the 46 kinds of carotenoids, (E/Z)-phytoene, violaxanthin myristate and violaxanthin palmitate were the major components. The RNA-seq and qRT-PCR results indicated that the pigment accumulation was linked to the expression of genes involved in the anthocyanin and carotenoid biosynthesis pathways. Yeast two-hybrid (Y2H) assays showed the interaction between different regulator factors in tulip MYB-bHLH-WD40 (MBW) complexes. Co-expression analyses of genes were performed, which include anthocyanin and carotenoid biosynthesis genes and transcription factors involved in MYB, bHLH, WRKY, AUX-IAA and MADS-box. The co-expression network and related analysis provide a basis for the discovery of color regulatory factors. Taken together, our study sheds light on the anthocyanin and carotenoid synthesis pathways and candidate regulatory transcription factors underlying flower coloration and shows the potential of flower breeding or pigments engineering in tulips.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Liujun Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Qingling Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
2
|
Hou X, Qi N, Wang C, Li C, Huang D, Li Y, Wang N, Liao W. Hydrogen-rich water promotes the formation of bulblets in Lilium davidii var. unicolor through regulating sucrose and starch metabolism. PLANTA 2021; 254:106. [PMID: 34689230 PMCID: PMC8542194 DOI: 10.1007/s00425-021-03762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/08/2023]
Abstract
HRW increased the content of starch and sucrose via regulating a series of sucrose and starch synthesis genes, which induced the formation of bulblets and adventitious roots of Lilium davidii var. unicolor. Hydrogen gas (H2), as a signaling molecule, has been reported to be involved in plant growth and development. Here, the effect of hydrogen-rich water (HRW) on the formation of bulblets and adventitious roots in the scale cuttings of Lilium davidii var. unicolor and its mechanisms at the molecular levels were investigated. The results revealed that compared with distilled water treatment (Con), the number of bulblets and adventitious roots were significantly promoted by different concentrations of HRW treatment. Treatment with 100% HRW obtained the most positive effects. RNA sequencing (RNA-seq) analysis found that compared with Con, a total of 1702 differentially expressed genes (DEGs, upregulated 552 DEGs, downregulated 1150 DEGs) were obtained under HRW treatment. The sucrose and starch metabolism, cysteine and methionine metabolism and phenylalanine metabolism were significantly enriched in the analysis of the Kyoto encyclopedia of genes and genomes (KEGG). In addition, the genes involved in carbohydrate metabolism were significantly upregulated or downregulated (upregulated 22 DEGs, downregulated 15 DEGs), indicating that starch and sucrose metabolism held a central position. The expressions of 12 DEGs were identified as coding for key enzymes in metabolism of carbohydrates was validated by qPCR during bulblet formation progress. RNA-seq analysis and expression profiles indicated that the unigene levels such as glgc, Susy, otsA and glgP, BMY and TPS were well correlated with sucrose and starch metabolism during HRW-induced bulblet formation. The change of key enzyme content in starch and sucrose metabolism pathway was explored during bulblet formation in Lilium under HRW treatment. Meanwhile, compared with Con, 100% HRW treatment increased the levels of sucrose and starch, and decreased the trehalose content, which were agreed with the expression pattern of DEGs related to the biosynthesis pathway of sucrose, starch and trehalose. Therefore, this study suggested that HRW could promote the accumulation of sucrose and starch contents in mother scales, and decreased the trehalose content, this might provide more energy for bulblet formation.
Collapse
Affiliation(s)
- Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
3
|
Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. Int J Mol Sci 2021; 22:ijms22157956. [PMID: 34360726 PMCID: PMC8348885 DOI: 10.3390/ijms22157956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.
Collapse
|
4
|
Stander EA, Williams W, Mgwatyu Y, van Heusden P, Rautenbach F, Marnewick J, Le Roes-Hill M, Hesse U. Transcriptomics of the Rooibos (Aspalathus linearis) Species Complex. BIOTECH 2020; 9:biotech9040019. [PMID: 35822822 PMCID: PMC9258316 DOI: 10.3390/biotech9040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Rooibos (Aspalathus linearis), widely known as a herbal tea, is endemic to the Cape Floristic Region of South Africa (SA). It produces a wide range of phenolic compounds that have been associated with diverse health promoting properties of the plant. The species comprises several growth forms that differ in their morphology and biochemical composition, only one of which is cultivated and used commercially. Here, we established methodologies for non-invasive transcriptome research of wild-growing South African plant species, including (1) harvesting and transport of plant material suitable for RNA sequencing; (2) inexpensive, high-throughput biochemical sample screening; (3) extraction of high-quality RNA from recalcitrant, polysaccharide- and polyphenol rich plant material; and (4) biocomputational analysis of Illumina sequencing data, together with the evaluation of programs for transcriptome assembly (Trinity, IDBA-Trans, SOAPdenovo-Trans, CLC), protein prediction, as well as functional and taxonomic transcript annotation. In the process, we established a biochemically characterized sample pool from 44 distinct rooibos ecotypes (1–5 harvests) and generated four in-depth annotated transcriptomes (each comprising on average ≈86,000 transcripts) from rooibos plants that represent distinct growth forms and differ in their biochemical profiles. These resources will serve future rooibos research and plant breeding endeavours.
Collapse
Affiliation(s)
- Emily Amor Stander
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa; (E.A.S.); (W.W.); (Y.M.); (P.v.H.)
| | - Wesley Williams
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa; (E.A.S.); (W.W.); (Y.M.); (P.v.H.)
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville 7535, South Africa
| | - Yamkela Mgwatyu
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa; (E.A.S.); (W.W.); (Y.M.); (P.v.H.)
| | - Peter van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa; (E.A.S.); (W.W.); (Y.M.); (P.v.H.)
| | - Fanie Rautenbach
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (F.R.); (J.M.); (M.L.R.-H.)
| | - Jeanine Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (F.R.); (J.M.); (M.L.R.-H.)
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (F.R.); (J.M.); (M.L.R.-H.)
| | - Uljana Hesse
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa; (E.A.S.); (W.W.); (Y.M.); (P.v.H.)
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville 7535, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Correspondence:
| |
Collapse
|
5
|
Wang Y, Zhao H, Wang Y, Yu S, Zheng Y, Wang W, Chan Z. Comparative physiological and metabolomic analyses reveal natural variations of tulip in response to storage temperatures. PLANTA 2019; 249:1379-1390. [PMID: 30671621 DOI: 10.1007/s00425-018-03072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three tulip cultivars were screened out with successful bloom after a short-term cold treatment, and the differential responses to postharvest cold treatment were analyzed between two contrasting tulip cultivars. Tulip is one of the most important ornamental bulbous plants in the world. A precious precooling treatment during bulb postharvest is required for optimal floral stalk elongation and flower development in tulip. In this study, the naturally growing and flowering variations of tulip to storage temperatures were analyzed after long-term cold (LTC) and short-term cold (STC) treatments. Three cultivars were screened out with successful blooming after STC, which included 'Dow Jones' (DJ), 'Van Eijk' (VE) and 'World's Favourite' (WF) (5 °C for 2 weeks). Comparative analysis revealed that DJ cultivar maintained normal and intact reproductive organs under STC condition, while the 'Orange Emperor' (OE) cultivar, which failed blooming after STC treatment, showed gradually destroyed reproductive organs under STC condition. In addition, the DJ cultivar accumulated lower ROS levels and higher antioxidant enzyme activities, as well as significantly higher contents of total primary metabolites than OE to maintain normal shoot growth and floral organ development under STC condition. The relative expression levels of genes involved in vernalization and/or flower time regulation in DJ were significantly higher than those in OE after STC treatment. This study provides new insights into understanding the underlying mechanism of natural variation of tulip cultivars during postharvest storage treatment.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Huimin Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Siyuan Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuchao Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wen'en Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Lazare S, Burgos A, Brotman Y, Zaccai M. The metabolic (under)groundwork of the lily bulb toward sprouting. PHYSIOLOGIA PLANTARUM 2018; 163:436-449. [PMID: 29274128 DOI: 10.1111/ppl.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Large bulbs of Lilium longiflorum have an obligatory cold requirement to flower. Bulb cooling is widely used to induce and accelerate flowering. However, in-depth investigations of the effect of bulb cooling on major landmarks of plant development are lacking. It has been demonstrated that low temperature induces carbohydrate degradation, yet integrative studies on metabolic changes occurring in the bulb are not available. We detected that cold exposure mainly hastened bulb sprouting, rather than floral transition or blooming. Metabolite profiling of cooled and non-cooled bulbs was carried out, revealing cold-induced accumulation of soluble sugars, lipids and specific amino acids, and a significant reduction in tricarboxylic acid (TCA)-cycle elements. We observed that metabolic pathways located in the cytosol - including glycolysis, lipid synthesis and part of the gamma-Aminobutyric acid (GABA) shunt - were enhanced by cold exposure, while mitochondrial metabolism - namely the TCA cycle - was reduced by cold. We suggest a physiological model accounting for this metabolic discrepancy.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Asdrubal Burgos
- Laboratorio de Biotecnología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, CP 15110, Zapopan, Jalisco, Mexico
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Moreno-Pachon NM, Mutimawurugo MC, Heynen E, Sergeeva L, Benders A, Blilou I, Hilhorst HWM, Immink RGH. Role of Tulipa gesneriana TEOSINTE BRANCHED1 (TgTB1) in the control of axillary bud outgrowth in bulbs. PLANT REPRODUCTION 2018; 31:145-157. [PMID: 29218597 PMCID: PMC5940712 DOI: 10.1007/s00497-017-0316-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 05/05/2023]
Abstract
Tulip vegetative reproduction. Tulips reproduce asexually by the outgrowth of their axillary meristems located in the axil of each bulb scale. The number of axillary meristems in one bulb is low, and not all of them grow out during the yearly growth cycle of the bulb. Since the degree of axillary bud outgrowth in tulip determines the success of their vegetative propagation, this study aimed at understanding the mechanism controlling the differential axillary bud activity. We used a combined physiological and "bottom-up" molecular approach to shed light on this process and found that first two inner located buds do not seem to experience dormancy during the growth cycle, while mid-located buds enter dormancy by the end of the growing season. Dormancy was assessed by weight increase and TgTB1 expression levels, a conserved TCP transcription factor and well-known master integrator of environmental and endogenous signals influencing axillary meristem outgrowth in plants. We showed that TgTB1 expression in tulip bulbs can be modulated by sucrose, cytokinin and strigolactone, just as it has been reported for other species. However, the limited growth of mid-located buds, even when their TgTB1 expression is downregulated, points at other factors, probably physical, inhibiting their growth. We conclude that the time of axillary bud initiation determines the degree of dormancy and the sink strength of the bud. Thus, development, apical dominance, sink strength, hormonal cross-talk, expression of TgTB1 and other possibly physical but unidentified players, all converge to determine the growth capacity of tulip axillary buds.
Collapse
Affiliation(s)
- Natalia M Moreno-Pachon
- Physiology of Flower Bulbs, Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marie-Chantal Mutimawurugo
- Physiology of Flower Bulbs, Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Crop Science, College of Agriculture, Animal Science and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Eveline Heynen
- Physiology of Flower Bulbs, Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Anne Benders
- Physiology of Flower Bulbs, Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ikram Blilou
- Department of Plant Developmental Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Laboratory (WSL), Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard G H Immink
- Physiology of Flower Bulbs, Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Leeggangers HACF, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk ADJ, Nunez de Caceres Gonzalez FF, Saadon-Shitrit S, Nijveen H, Hilhorst HWM, Immink RGH, Zaccai M. Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control. PLANT & CELL PHYSIOLOGY 2018; 59:90-106. [PMID: 29088399 DOI: 10.1093/pcp/pcx164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/24/2017] [Indexed: 05/21/2023]
Abstract
Floral induction in Tulipa gesneriana and Lilium longiflorum is triggered by contrasting temperature conditions, high and low temperature, respectively. In Arabidopsis, the floral integrator FLOWERING LOCUS T (FT), a member of the PEBP (phosphatidyl ethanolamine-binding protein) gene family, is a key player in flowering time control. In this study, one PEBP gene was identified and characterized in lily (LlFT) and three PEBP genes were isolated from tulip (TgFT1, TgFT2 and TgFT3). Overexpression of these genes in Arabidopsis thaliana resulted in an early flowering phenotype for LlFT and TgFT2, but a late flowering phenotype for TgFT1 and TgFT3. Overexpression of LlFT in L. longiflorum also resulted in an early flowering phenotype, confirming its proposed role as a flowering time-controlling gene. The tulip PEBP genes TgFT2 and TgFT3 have a similar expression pattern in tulip, but show opposite effects on the timing of flowering in Arabidopsis. Therefore, the difference between these two proteins was further investigated by interchanging amino acids thought to be important for the FT function. This resulted in the conversion of phenotypes in Arabidopsis upon overexpressing the substituted TgFT2 and TgFT3 genes, revealing the importance of these interchanged amino acid residues. Based on all obtained results, we hypothesize that LlFT is involved in creating meristem competence to flowering-related cues in lily, and TgFT2 is considered to act as a florigen involved in the floral induction in tulip. The function of TgFT3 remains unclear, but, based on our observations and phylogenetic analysis, we propose a bulb-specific function for this gene.
Collapse
Affiliation(s)
- Hendrika A C F Leeggangers
- Wageningen Seed Lab (WSL), Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Tamar Rosilio-Brami
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | - Judit Bigas-Nadal
- Wageningen Seed Lab (WSL), Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Noam Rubin
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Shani Saadon-Shitrit
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | - Harm Nijveen
- Wageningen Seed Lab (WSL), Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Lab (WSL), Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Richard G H Immink
- Wageningen Seed Lab (WSL), Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| |
Collapse
|
9
|
Du F, Fan J, Wang T, Wu Y, Grierson D, Gao Z, Xia Y. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes. BMC Genomics 2017; 18:899. [PMID: 29166855 PMCID: PMC5700745 DOI: 10.1186/s12864-017-4303-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Lily is an economically important plant, with leaves and bulbs consisting of overlapping scales, large ornamental flowers and a very large genome. Although it is recognized that flowers and bulb scales are modified leaves, very little is known about the genetic control and biochemical differentiation underlying lily organogenesis and development. Here we examined the differentially expressed genes in flower, leaf and scale of lily, using RNA-sequencing, and identified organ-specific genes, including transcription factors, genes involved in photosynthesis in leaves, carbohydrate metabolism in bulb scales and scent and color production in flowers. RESULTS Over 11Gb data were obtained and 2685, 2296, and 1709 differentially expressed genes were identified in the three organs, with 581, 662 and 977 unique DEGs in F-vs-S, L-vs-S and L-vs-F comparisons. By functional enrichment analysis, genes likely to be involved in biosynthetic pathways leading to floral scent production, such as 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 3-ketoacyl-CoA thiolase (KAT), hydroperoxide lyase (HPL), geranylgeranyl pyrophosphate (GGPP) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HDS) and terpene synthase (TPS), and floral color genes, such as dihydroflavonol 4-reductase (DFR), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) were identified. Distinct groups of genes that participate in starch and sucrose metabolism, such as sucrose synthase (SS), invertase (INV), sucrose phosphate synthase (SPS), starch synthase (SSS), starch branching enzyme (SBE), ADP-glucose pyrophosphorylase (AGP) andβ-amylase (BAM) and photosynthesis genes (Psa, Psb, Pet and ATP) were also identified. The expression of six floral fragrance-related DGEs showed agreement between qRT-PCR results and RPKM values, confirming the value of the data obtained by RNA-seq. We obtained the open reading frame of the terpene synthase gene from Lilium 'Sorbonne', designated LsTPS, which had 99.55% homology to transcript CL4520.Contig5_All. In addition, 54, 48 and 50 differently expressed transcription factor were identified by pairwise comparisons between the three organs and a regulatory network for monoterpene biosynthesis was constructed. CONCLUSIONS Analysis of differentially expressed genes in flower, leaf and bulb scale of lily, using second generation sequencing technology, yielded detailed information on lily metabolic differentiation in three organs. Analysis of the expression of flower scent biosynthesis genes has provided a model for the regulation of the pathway and identified a candidate gene encoding an enzyme catalyzing the final step in scent production. These digital gene expression profiles provide a valuable and informative database for the further identification and analysis of structural genes and transcription factors in different lily organs and elucidation of their function.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Junmiao Fan
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Yun Wu
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Donald Grierson
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yiping Xia
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Leeggangers HACF, Nijveen H, Bigas JN, Hilhorst HWM, Immink RGH. Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana. PLANT PHYSIOLOGY 2017; 173:1904-1919. [PMID: 28104719 PMCID: PMC5338654 DOI: 10.1104/pp.16.01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 05/21/2023]
Abstract
The vegetative-to-reproductive phase change in tulip (Tulipa gesneriana) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis (Arabidopsis thaliana), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1 Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 (TgTFL1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 (TgSOC1-like1) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change.
Collapse
Affiliation(s)
- Hendrika A C F Leeggangers
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Judit Nadal Bigas
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Richard G H Immink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|