1
|
Salojärvi J, Rambani A, Yu Z, Guyot R, Strickler S, Lepelley M, Wang C, Rajaraman S, Rastas P, Zheng C, Muñoz DS, Meidanis J, Paschoal AR, Bawin Y, Krabbenhoft TJ, Wang ZQ, Fleck SJ, Aussel R, Bellanger L, Charpagne A, Fournier C, Kassam M, Lefebvre G, Métairon S, Moine D, Rigoreau M, Stolte J, Hamon P, Couturon E, Tranchant-Dubreuil C, Mukherjee M, Lan T, Engelhardt J, Stadler P, Correia De Lemos SM, Suzuki SI, Sumirat U, Wai CM, Dauchot N, Orozco-Arias S, Garavito A, Kiwuka C, Musoli P, Nalukenge A, Guichoux E, Reinout H, Smit M, Carretero-Paulet L, Filho OG, Braghini MT, Padilha L, Sera GH, Ruttink T, Henry R, Marraccini P, Van de Peer Y, Andrade A, Domingues D, Giuliano G, Mueller L, Pereira LF, Plaisance S, Poncet V, Rombauts S, Sankoff D, Albert VA, Crouzillat D, de Kochko A, Descombes P. The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nat Genet 2024; 56:721-731. [PMID: 38622339 PMCID: PMC11018527 DOI: 10.1038/s41588-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Collapse
Affiliation(s)
- Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Aditi Rambani
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Zhe Yu
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Maud Lepelley
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Cui Wang
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniella Santos Muñoz
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - João Meidanis
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, The Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Yves Bawin
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Zhen Qin Wang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rudy Aussel
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | - Aline Charpagne
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Coralie Fournier
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Mohamed Kassam
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Gregory Lefebvre
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Déborah Moine
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Michel Rigoreau
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Jens Stolte
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Perla Hamon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Emmanuel Couturon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | | | - Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jan Engelhardt
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Peter Stadler
- Department of Computer Science, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | | | - Ucu Sumirat
- Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, Indonesia
| | - Ching Man Wai
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicolas Dauchot
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, Belgium
| | - Simon Orozco-Arias
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Andrea Garavito
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Catherine Kiwuka
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Pascal Musoli
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Anne Nalukenge
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Erwan Guichoux
- Biodiversité Gènes & Communautés, INRA, Bordeaux, France
| | | | - Martin Smit
- Hortus Botanicus Amsterdam, Amsterdam, the Netherlands
| | | | - Oliveiro Guerreiro Filho
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Masako Toma Braghini
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Lilian Padilha
- Embrapa Café/Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Pierre Marraccini
- CIRAD - UMR DIADE (IRD-CIRAD-Université de Montpellier) BP 64501, Montpellier, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Alan Andrade
- Embrapa Café/Inovacafé Laboratory of Molecular Genetics Campus da UFLA-MG, Lavras, Brazil
| | - Douglas Domingues
- Group of Genomics and Transcriptomes in Plants, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Lukas Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Luiz Filipe Pereira
- Embrapa Café/Lab. Biotecnologia, Área de Melhoramento Genético, Londrina, Brazil
| | | | - Valerie Poncet
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Alexandre de Kochko
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France.
| | - Patrick Descombes
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland.
| |
Collapse
|
2
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021; 9:microorganisms9040858. [PMID: 33923588 PMCID: PMC8073662 DOI: 10.3390/microorganisms9040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Brazil holds a series of favorable climatic conditions for agricultural production including the hours and intensity of sunlight, the availability of agricultural land and water resources, as well as diverse climates, soils and biomes. Amidst such diversity, Brazilian coffee producers have obtained various standards of qualities and aromas, between the arabica and robusta species, which each present a wide variety of lineages. However, temperatures in coffee producing municipalities in Brazil have increased by about 0.25 °C per decade and annual precipitation has decreased. Therefore, the agricultural sector may face serious challenges in the upcoming decades due to crop sensitivity to water shortages and thermal stress. Furthermore, higher temperatures may reduce the quality of the culture and increase pressure from pests and diseases, reducing worldwide agricultural production. The impacts of climate change directly affect the coffee microbiota. Within the climate change scenario, aflatoxins, which are more toxic than OTA, may become dominant, promoting greater food insecurity surrounding coffee production. Thus, closer attention on the part of authorities is fundamental to stimulate replacement of areas that are apt for coffee production, in line with changes in climate zoning, in order to avoid scarcity of coffee in the world market.
Collapse
|
4
|
Xiao D, Li X, Zhou YY, Wei L, Keovongkod C, He H, Zhan J, Wang AQ, He LF. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress. Gene 2021; 781:145535. [PMID: 33631240 DOI: 10.1016/j.gene.2021.145535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Aluminum (Al) toxicity is an important factor in limiting peanut growth on acidic soil. The molecular mechanisms underlying peanut responses to Al stress are largely unknown. In this study, we performed transcriptome analysis of the root tips (0-1 cm) of peanut cultivar ZH2 (Al-sensitive) and 99-1507 (Al-tolerant) respectively. Root tips of peanuts that treated with 100 μM Al for 8 h and 24 h were analyzed by RNA-Seq, and a total of 8,587 differentially expressed genes (DEGs) were identified. GO and KEGG pathway analysis excavated a group of important Al-responsive genes related to organic acid transport, metal cation transport, transcription regulation and programmed cell death (PCD). These homologs were promising targets to modulate Al tolerance in peanuts. It was found that the rapid transcriptomic response to Al stress in 99-1507 helped to activate effective Al tolerance mechanisms. Protein and protein interaction analysis indicated that MAPK signal transduction played important roles in the early response to Al stress in peanuts. Moreover, weighted correlation network analysis (WGCNA) identified a predicted EIL (EIN3-like) gene with greatly increased expression as an Al-associated gene, and revealed a link between ethylene signaling transduction and Al resistance related genes in peanut, which suggested the enhanced signal transduction mediated the rapid transcriptomic responses. Our results revealed key pathways and genes associated with Al stress, and improved the understanding of Al response in peanut.
Collapse
Affiliation(s)
- Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China.
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Yun-Yi Zhou
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Li Wei
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Chanthaphoone Keovongkod
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Huyi He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China
| | - Ai-Qin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China
| | - Long-Fei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China.
| |
Collapse
|
5
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Barka GD, Caixeta ET, Ferreira SS, Zambolim L. In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach. PLoS One 2020; 15:e0222747. [PMID: 32639982 PMCID: PMC7343155 DOI: 10.1371/journal.pone.0222747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.
Collapse
Affiliation(s)
- Geleta Dugassa Barka
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia, Ethiopia
| | - Eveline Teixeira Caixeta
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, Brazil
- * E-mail:
| | - Sávio Siqueira Ferreira
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Laércio Zambolim
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
7
|
Couttolenc-Brenis E, Carrión GL, Villain L, Ortega-Escalona F, Ramírez-Martínez D, Mata-Rosas M, Méndez-Bravo A. Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ 2020; 8:e8345. [PMID: 32002327 PMCID: PMC6982411 DOI: 10.7717/peerj.8345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background
In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated.
Methods
We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5).
Results
Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca’s defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.
Collapse
Affiliation(s)
- Edgar Couttolenc-Brenis
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
- Instituto Nacional de Investigaciones Forestales Agrìcolas y Pecuarias, C.E. Cotaxtla, Veracruz, México
| | - Gloria L. Carrión
- Red de Biodiversidad y Sistemática de Hongos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luc Villain
- La Recherche Agronomique pour le Développement, UMR, RPB, CIRAD, Montpellier, France
| | | | - Daniel Ramírez-Martínez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alfonso Méndez-Bravo
- CONACYT-Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
8
|
Baba VY, Braghini MT, Dos Santos TB, de Carvalho K, Soares JDM, Ivamoto-Suzuki ST, Maluf MP, Padilha L, Paccola-Meirelles LD, Pereira LF, Domingues DS. Transcriptional patterns of Coffea arabica L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ 2020; 8:e8320. [PMID: 31915587 PMCID: PMC6944126 DOI: 10.7717/peerj.8320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/30/2019] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the transcriptional profile of genes related to nitrogen (N) assimilation in coffee plants susceptible and resistant to rust fungi under N sufficiency and N suppression. For this purpose, we inoculated young coffee leaves with Hemileia vastatrix uredospores and collected them at 0, 12, 24 and 48 hours post-inoculation (HPI) to evaluate the relative expressions of genes encoding cytosolic glutamine synthetase (CaGS1), plastid glutamine synthetase (CaGS2), nitrate reductase (CaNR), and asparagine synthetase (CaAS). The genes exhibited distinct patterns of transcriptional modulation for the different genotypes and N nutritional regimes. The resistant genotype (I59) presented high levels of transcription in response to pathogen inoculation for CaNR and CaGS1 genes, evaluated under N sufficiency in the initial moments of infection (12 HPI). The gene CaGS1 also showed a peak at 48 HPI. The susceptible genotype (CV99) showed increased transcript rates of CaNR at 12 and 24 HPI in response to rust inoculation. The transcriptional patterns observed for CV99, under N suppression, were high levels for CaAS and CaGS2 at all post-inoculation times in response to coffee leaf rust disease. In addition, CaGS1 was up-regulated at 48 HPI for CV99. Cultivar I59 showed high transcript levels at 12 HPI for CaAS and peaks at 24 and 48 HPI for CaGS2 in inoculated samples. Consequently, total chlorophyl concentration was influenced by N suppression and by rust infection. Regarding enzyme activities in vitro for glutamine synthetase and CaNR, there was an increase in infected coffee leaves (I59) and under N sufficiency. Moreover, CV99 was modulated in both N nutritional regimes for GS activity in response to rust. Our results indicate that N transport genes trigger a differential modulation between genotypes through the action of rust disease.
Collapse
Affiliation(s)
- Viviane Yumi Baba
- Department of Agronomy, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil
| | - Masako Toma Braghini
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil
| | - Tiago Benedito Dos Santos
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Programa de Pós-Graduação em Agronomia, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Kenia de Carvalho
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Plant Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
| | | | - Suzana Tiemi Ivamoto-Suzuki
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Department of Botany, Instituto de Biociências, São Paulo State University, UNESP, Rio Claro, São Paulo, Brazil
| | - Mirian P Maluf
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Lilian Padilha
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Luzia D Paccola-Meirelles
- Department of Agronomy, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Department of Agronomy, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Luiz Filipe Pereira
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Douglas S Domingues
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Department of Botany, Instituto de Biociências, São Paulo State University, UNESP, Rio Claro, São Paulo, Brazil
| |
Collapse
|