1
|
Shimizu S, Hori K, Ishizaki K, Ohta H, Shimojima M. SENSITIVE TO FREEZING2 is crucial for growth of Marchantia polymorpha under acidic conditions. JOURNAL OF PLANT RESEARCH 2024; 137:1115-1126. [PMID: 39098962 PMCID: PMC11525325 DOI: 10.1007/s10265-024-01564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha. TGDG is synthesized by galactolipid: galactolipid galactosyltransferase [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]. We analyzed the subcellular localization and GGGT activity of two M. polymorpha SFR2 homologs (MpGGGT1 and MpGGGT2, each as a GFP-fusion protein) using a transient expression system in Nicotiana benthamiana leaves and found that MpGGGT1-GFP localized in the chloroplast envelope membrane. We produced mutants Mpgggt1 and Mpgggt2 and found that TGDG did not accumulate in Mpgggt1 upon treatment of the thallus with acetic acid. Moreover, growth of Mpgggt1 mutants was impaired by acetic acid treatment. Microscopy revealed that the acetic acid treatment of M. polymorpha plants damaged intracellular membranes. The fact that the effect was similar for wild-type and Mpgggt1 plants suggested that MpGGGT has a role in recovery from damage. These results indicate that MpGGGT plays a crucial role in M. polymorpha growth under conditions of acid stress, which may have been encountered during the ancient terrestrial colonization of plants.
Collapse
Affiliation(s)
- Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | | | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan.
| |
Collapse
|
2
|
Zhao L, Zhao X, Huang L, Liu X, Wang P. Transcriptome analysis of Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum leaves in response to high-phosphorus stress. BMC PLANT BIOLOGY 2024; 24:635. [PMID: 38971717 PMCID: PMC11227232 DOI: 10.1186/s12870-024-05339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaoyan Liu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
3
|
Chen C, Xiang J, Yuan J, Shao S, Rehman M, Peng D, Liu L. Comparative biochemical and transcriptomic analysis reveals the phosphate-starving tolerance of two ramie varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107979. [PMID: 37643556 DOI: 10.1016/j.plaphy.2023.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Ramie (Boehmeria nivea L.) is a highly valued fiber crop. Its yield is often limited by lack of available phosphate (Pi) in the soil, but the underlying molecular mechanisms of ramie's response to Pi deficiency remain largely unknown. To investigate how ramie adapts to low Pi stress, we selected a low Pi-tolerant variety (H-5) and a low Pi-sensitive variety (XYL), and conducted a biochemical and transcriptomic analysis on roots and leaves of both varieties. After subjecting the plants to Pi-deficient and Pi-sufficient conditions for 15 days, we found that H-5 exhibited higher dry weight, longer root systems, and higher levels of Pi, galactolipids, and organic acids when subjected to Pi deprivation, compared to XYL. Transcriptomic analysis further revealed that Pi-responsive genes involved in lipid metabolism, Pi transport, organic acid synthesis, and acid phosphatase activities were more induced in the tolerant variety H-5. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five hub genes, including phosphate transporter, SPX domain-containing protein and sulfoquinovosyl transferase, which played key roles in low Pi tolerance in ramie. The present study will broaden our comprehension of the differences and molecular mechanisms of different ramie cultivars in response to Pi starvation, and lay a foundation for future agronomic improvements in ramie and other fiber crops.
Collapse
Affiliation(s)
- Chen Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaming Xiang
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Institute of ZheJiang University, Quzhou, China
| | - Jinzhan Yuan
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Shao
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muzammal Rehman
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Li P, Yu J, Feng N, Weng J, Rehman A, Huang J, Tu S, Niu Q. Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L. Int J Mol Sci 2022; 23:ijms232012073. [PMID: 36292929 PMCID: PMC9603772 DOI: 10.3390/ijms232012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.
Collapse
|
5
|
Ravelo-Ortega G, Pelagio-Flores R, López-Bucio J, Campos-García J, Reyes de la Cruz H, López-Bucio JS. Early sensing of phosphate deprivation triggers the formation of extra root cap cell layers via SOMBRERO through a process antagonized by auxin signaling. PLANT MOLECULAR BIOLOGY 2022; 108:77-91. [PMID: 34855067 DOI: 10.1007/s11103-021-01224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
6
|
Verma L, Kohli PS, Maurya K, K B A, Thakur JK, Giri J. Specific galactolipids species correlate with rice genotypic variability for phosphate utilization efficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:105-115. [PMID: 34628172 DOI: 10.1016/j.plaphy.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane lipid remodeling helps in the efficient utilization of phosphorus (P) by replacing phospholipids with galactolipids during P deficiency. Previous studies have shown lipid remodeling in rice under P deficiency; however, main lipid classes did not show association with superior P-use-efficiency in rice genotypes. Here, diverse rice genotypes were extensively phenotyped in normal (NP) and low P (LP) conditions. Based on the phenotypic response to P deficiency, genotypes were identified as tolerant and sensitive. Further, bulks were generated differing in their physiological P-use-efficiency (PPUE) during LP condition. Shoot lipidome profiling of genotypes was performed and used to correlate the abundance of various lipid classes and their constituent species with the PPUE of the genotypes. Lipid remodeling was observed as a P-starvation-induced response in all the genotypes. However, neither total galacto- and phospholipids nor the lipid classes correlated with PPUE during P deficiency. However, the difference in PPUE in the two bulks correlated with specific lipid species of galactolipids (DGDG, MGDG). Further, DGDG34:3 had the highest Mol% among the differentially accumulated lipid species between the two bulks. Our study reveals the importance of specific galactolipids species in rice adaptation to P deficient soils and thus opens new targets for future research.
Collapse
Affiliation(s)
- Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abhijith K B
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|