1
|
He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6. THE PLANT CELL 2024; 37:koae276. [PMID: 39383255 DOI: 10.1093/plcell/koae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Plant height is an important agronomic characteristic of rice (Oryza sativa L.). Map-based cloning analyses of a natural semi-dwarf rice mutant with inwardly curled leaves found in the field revealed that the defects were due to a mutation of a SHAQKYF-class MYB family transcription factor, OsKANADI1 (OsKAN1). OsKAN1 directly bound to the OsYABBY5 (OsYAB5) promoter to repress its expression and interacted with OsYAB5 to form a functional OsKAN1-OsYAB5 complex. GIBERELLIN 2-OXIDASE6 (OsGA2ox6), encoding an enzyme in the gibberellin (GA) catabolic pathway, was activated by OsYAB5. Furthermore, the OsKAN1-OsYAB5 complex suppressed the inhibitory effect of OsKAN1 toward OsYAB5 and inhibited OsYAB5-induced OsGA2ox6 expression. The proOsKAN1:OsYAB5 transgenic plants were taller than wild-type plants, whereas oskan1 proOsKAN1:OsYAB5 plants exhibited a severe dwarf phenotype due to the absence of the OsKAN1-OsYAB5 complex. The OsKAN1-OsYAB5 complex modulated OsGA2ox6 expression, thereby regulating the levels of bioactive gibberellins and, consequently, plant height. This study elucidated the mechanism underlying the effect of the OsKAN1-OsYAB5-OsGA2ox6 regulatory pathway on plant height at different positions in rice stems and provided insights on stem development and candidate genes for the aerial architecture improvement of crop plants.
Collapse
Affiliation(s)
- Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Wu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Caiyun Yin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yiqing Tan
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Lv
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiqiang Liao
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Sarkar MAR, Sarkar S, Islam MSU, Zohra FT, Rahman SM. A genome‑wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.). Genomics Inform 2023; 21:e36. [PMID: 37813632 PMCID: PMC10584642 DOI: 10.5808/gi.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Salim Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
3
|
Wu R, Guo L, Guo Y, Ma L, Xu K, Zhang B, Du L. The G2-Like gene family in Populus trichocarpa: identification, evolution and expression profiles. BMC Genom Data 2023; 24:37. [PMID: 37403017 PMCID: PMC10320924 DOI: 10.1186/s12863-023-01138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
The Golden2-like (GLK) transcription factors are plant-specific transcription factors (TFs) that perform extensive and significant roles in regulating chloroplast development. Here, genome-wide identification, classification, conserved motifs, cis-elements, chromosomal locations, evolution and expression patterns of the PtGLK genes in the woody model plant Populus trichocarpa were analyzed in detail. In total, 55 putative PtGLKs (PtGLK1-PtGLK55) were identified and divided into 11 distinct subfamilies according to the gene structure, motif composition and phylogenetic analysis. Synteny analysis showed that 22 orthologous pairs and highly conservation between regions of GLK genes across P. trichocarpa and Arabidopsis were identified. Furthermore, analysis of the duplication events and divergence times provided insight into the evolutionary patterns of GLK genes. The previously published transcriptome data indicated that PtGLK genes exhibited distinct expression patterns in various tissues and different stages. Additionally, several PtGLKs were significantly upregulated under the responses of cold stress, osmotic stress, and methyl jasmonate (MeJA) and gibberellic acid (GA) treatments, implying that they might take part in abiotic stress and phytohormone responses. Overall, our results provide comprehensive information on the PtGLK gene family and elucidate the potential functional characterization of PtGLK genes in P. trichocarpa.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lin Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueyang Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lehang Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kehang Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Boyu Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis). Molecules 2022; 27:molecules27175491. [PMID: 36080259 PMCID: PMC9457811 DOI: 10.3390/molecules27175491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
G2-like (GLK) transcription factors contribute significantly and extensively in regulating chloroplast growth and development in plants. This study investigated the genome-wide identification, phylogenetic relationships, conserved motifs, promoter cis-elements, MCScanX, divergence times, and expression profile analysis of PeGLK genes in moso bamboo (Phyllostachys edulis). Overall, 78 putative PeGLKs (PeGLK1–PeGLK78) were identified and divided into 13 distinct subfamilies. Each subfamily contains members displaying similar gene structure and motif composition. By synteny analysis, 42 orthologous pairs and highly conserved microsynteny between regions of GLK genes across moso bamboo and maize were found. Furthermore, an analysis of the divergence times indicated that PeGLK genes had a duplication event around 15 million years ago (MYA) and a divergence happened around 38 MYA between PeGLK and ZmGLK. Tissue-specific expression analysis showed that PeGLK genes presented distinct expression profiles in various tissues, and many members were highly expressed in leaves. Additionally, several PeGLKs were significantly up-regulated under cold stress, osmotic stress, and MeJA and GA treatment, implying that they have a likelihood of affecting abiotic stress and phytohormone responses in plants. The results of this study provide a comprehensive understanding of the moso bamboo GLK gene family, as well as elucidating the potential functional characterization of PeGLK genes.
Collapse
|
5
|
Nan GL, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. THE PLANT CELL 2022; 34:1207-1225. [PMID: 35018475 PMCID: PMC8972316 DOI: 10.1093/plcell/koac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- The Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, Missouri 65211, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| |
Collapse
|
6
|
Liu Z, Xiong T, Zhao Y, Qiu B, Chen H, Kang X, Yang J. Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:952877. [PMID: 35968152 PMCID: PMC9366356 DOI: 10.3389/fpls.2022.952877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 05/02/2023]
Abstract
Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tao Xiong
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Hao Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- *Correspondence: Jun Yang,
| |
Collapse
|
7
|
Zhao Z, Shuang J, Li Z, Xiao H, Liu Y, Wang T, Wei Y, Hu S, Wan S, Peng R. Identification of the Golden-2-like transcription factors gene family in Gossypium hirsutum. PeerJ 2021; 9:e12484. [PMID: 34820202 PMCID: PMC8603818 DOI: 10.7717/peerj.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.
Collapse
Affiliation(s)
- Zilin Zhao
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| | - Jiaran Shuang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, China
| | - Huimin Xiao
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shoulin Hu
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Sumei Wan
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Renhai Peng
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| |
Collapse
|
8
|
Qin M, Zhang B, Gu G, Yuan J, Yang X, Yang J, Xie X. Genome-Wide Analysis of the G2-Like Transcription Factor Genes and Their Expression in Different Senescence Stages of Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:626352. [PMID: 34135936 PMCID: PMC8202009 DOI: 10.3389/fgene.2021.626352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Golden2-like (GLK) transcription factors play important roles in regulating chloroplast growth, development, and senescence in plants. In this study, a total of 89 NtGLK genes (NtGLK1-NtGLK89) were identified in the tobacco genome and were classified into 10 subfamilies with variable numbers of exons and similar structural organizations based on the gene structure and protein motif analyses. Twelve segmental duplication pairs of NtGLK genes were identified in the genome. These NtGLK genes contain two conserved helix regions related to the HLH structure, and the sequences of the first helix region are less conserved than that of the second helix motif. Cis-regulatory elements of the NtGLK promoters were widely involved in light responsiveness, hormone treatment, and physiological stress. Moreover, a total of 206 GLK genes from tomato, tobacco, maize, rice, and Arabidopsis were retrieved and clustered into eight subgroups. Our gene expression analysis indicated that NtGLK genes showed differential expression patterns in tobacco leaves at five senescence stages. The expression levels of six NtGLK genes in group C were reduced, coinciding precisely with the increment of the degree of senescence, which might be associated with the function of leaf senescence of tobacco. Our results have revealed valuable information for further functional characterization of the GLK gene family in tobacco.
Collapse
Affiliation(s)
- Mingyue Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Xuanshong Yang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|