1
|
Mohanasundaram B, Pandey S. Moving beyond the arabidopsis-centric view of G-protein signaling in plants. TRENDS IN PLANT SCIENCE 2023; 28:1406-1421. [PMID: 37625950 DOI: 10.1016/j.tplants.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA.
| |
Collapse
|
2
|
Molecular Identification of the G-Protein Genes and Their Expression Profiles in Response to Nitrogen Deprivation in Brassica napus. Int J Mol Sci 2022; 23:ijms23158151. [PMID: 35897727 PMCID: PMC9330883 DOI: 10.3390/ijms23158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Heterotrimeric guanine nucleotide binding protein (G-protein) consisting of Gα, Gβ, and Gγ subunits is one of the key signal transducers in plants. Recent studies indicated that G-protein has been proposed as an important mediator of nitrogen responses in rice, wheat, and Arabidopsis. However, little is known about these G-proteins in Brassica napus (B. napus), except for three identified G-proteins, BnGA1, BnGB1, and BnGG2. Therefore, the aim of the present study is to characterize the members of the G-protein gene family in allotetraploid B. napus and to analyze their expression profiles in response to nitrogen deprivation. In total, 21 G-protein family members were identified in B. napus, encoding two Gα, six Gβ, and 13 Gγ. Sequence and phylogenetic analyses showed that although genome-wide triploid events increased the number of genes encoding Gα, Gβ, and Gγ subunits, the gene structure and protein properties of the genes encoding each G-protein subunit were extremely conserved. Collinearity analysis showed that most G-protein genes in B. napus had syntenic relationships with G-protein members of Arabidopsis, Brassica rape (B. rapa), and Brassica oleracea (B. oleracea). Expression profile analysis indicated that Gα and C-type Gγ genes (except BnGG10 and BnGG12 were highly expressed in flower and ovule) were barely expressed in most organs, whereas most Gβ and A-type Gγ genes tended to be highly expressed in most organs. G-protein genes also showed various expression patterns in response to nitrogen-deficient conditions. Under nitrogen deficiency, Gα and five C-type Gγ genes were upregulated initially in roots, while in leaves, Gα was downregulated initially and five C-type Gγ genes were highly expressed in different times. These results provide a complex genetic dissection of G-protein genes in B. napus, and insight into the biological functions of G-protein genes in response to nitrogen deficiency.
Collapse
|
3
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
4
|
Interacting partners of Brassica juncea Regulator of G-protein Signaling protein suggest its role in cell wall metabolism and cellular signaling. Biosci Rep 2022; 42:231472. [PMID: 35737296 PMCID: PMC9284343 DOI: 10.1042/bsr20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterotrimeric G-proteins interact with various upstream and downstream effectors to regulate various aspects of plant growth and development. G-protein effectors have been recently reported in Arabidopsis thaliana; however, less information is available from polyploid crop species having complex networks of G-protein components. Regulator of G-protein signaling (RGS) is a well-characterized GTPase accelerating protein, which plays an important role in the regulation of the G-protein cycle in plants. In the present study, four homologs encoding RGS proteins were isolated from the allotetraploid Brassica juncea, a globally important oilseed, vegetable, and condiment crop. The B. juncea RGS proteins were grouped into distinct BjuRGS1 and BjuRGS2 orthologous clades, and the expression of BjuRGS1 homologs was predominantly higher than BjuRGS2 homologs across the tested tissue types of B. juncea. Utilizing B. juncea Y2H library screening, a total of 30 nonredundant interacting proteins with the RGS-domain of the highly expressed BjuA.RGS1 was identified. Gene ontology analysis indicated that these effectors exerted various molecular, cellular, and physiological functions. Many of them were known to regulate cell wall metabolism (BjuEXP6, Bju-α-MAN, BjuPGU4, BjuRMS3) and phosphorylation-mediated cell signaling (BjuMEK4, BjuDGK3, and BjuKinase). Furthermore, transcript analysis indicated that the identified interacting proteins have a coexpression pattern with the BjuRGS homologs. These findings increase our knowledge about the novel targets of G-protein components from a globally cultivated Brassica crop and provide an important resource for developing a plant G-protein interactome network.
Collapse
|
5
|
Tiwari R, Bisht NC. The multifaceted roles of heterotrimeric G-proteins: lessons from models and crops. PLANTA 2022; 255:88. [PMID: 35304667 DOI: 10.1007/s00425-022-03868-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The review summarizes our advanced understanding of the heterotrimeric G-protein research from model plants and their emerging roles in modulating various plant architecture and agronomical traits in crop species. Heterotrimeric G-proteins (hereafter G-proteins), consisting of G-alpha (Gα), G-beta (Gβ) and G-gamma (Gγ) subunits, are key signal transducers conserved across different forms of life. The discovery of plant lineage-specific G-protein components (extra-large G-proteins and type-C Gγ subunits), inherent polyploidy in angiosperms, and unique modes of G-protein cycle regulation in plants pointed out to a few fundamental differences of plant G-protein signaling from its animal counterpart. Over the last 2 decades, extensive studies in the model plant Arabidopsis thaliana have confirmed the involvement of G-proteins in a wide range of plant growth and development, and stress adaptation processes. The G-protein research in crop species, however, is still in its infancy, and a handful of studies suggest important roles of G-proteins in regulating plant architectural and key agronomical traits including plant's response to abiotic and biotic factors. We propose that the advancement made in plant G-proteins research will facilitate the development of novel approaches to manage plant yield and fitness in changing environments.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Mathur S, Paritosh K, Tandon R, Pental D, Pradhan AK. Comparative Analysis of Seed Transcriptome and Coexpression Analysis Reveal Candidate Genes for Enhancing Seed Size/Weight in Brassica juncea. Front Genet 2022; 13:814486. [PMID: 35281836 PMCID: PMC8907137 DOI: 10.3389/fgene.2022.814486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.
Collapse
Affiliation(s)
- Shikha Mathur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Deepak Pental
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- *Correspondence: Akshay K. Pradhan,
| |
Collapse
|
7
|
Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 2021; 22:ijms22168678. [PMID: 34445383 PMCID: PMC8395518 DOI: 10.3390/ijms22168678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
As crucial signal transducers, G-proteins and G-protein-coupled receptors (GPCRs) have attracted increasing attention in the field of signal transduction. Research on G-proteins and GPCRs has mainly focused on animals, while research on plants is relatively rare. The mode of action of G-proteins is quite different from that in animals. The G-protein α (Gα) subunit is the most essential member of the G-protein signal cycle in animals and plants. The G-protein is activated when Gα releases GDP and binds to GTP, and the relationships with the GPCR and the downstream signal are also achieved by Gα coupling. It is important to study the role of Gα in the signaling pathway to explore the regulatory mechanism of G-proteins. The existence of a self-activated Gα in plants makes it unnecessary for the canonical GPCR to activate the G-protein by exchanging GDP with GTP. However, putative GPCRs have been found and proven to play important roles in G-protein signal transduction. The unique mode of action of G-proteins and the function of putative GPCRs in plants suggest that the same definition used in animal research cannot be used to study uncanonical GPCRs in plants. This review focuses on the different functions of the Gα and the mode of action between plants and animals as well as the functions of the uncanonical GPCR. This review employs a new perspective to define uncanonical GPCRs in plants and emphasizes the role of uncanonical GPCRs and Gα subunits in plant stress resistance and agricultural production.
Collapse
|
8
|
Arya GC, Tiwari R, Bisht NC. A complex interplay of Gβ and Gγ proteins regulates plant growth and defence traits in the allotetraploid Brassica juncea. PLANT MOLECULAR BIOLOGY 2021; 106:505-520. [PMID: 34176052 DOI: 10.1007/s11103-021-01165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Gene expression analysis coupled with in-planta studies showed that specific Gβγ combination regulates plant growth and defence traits in the allotetraploid Brassica juncea. Plant heterotrimeric G-proteins regulate a wide range of responses despite their limited repertoire of core components. The roles and functional interactions between different G-protein subunits are quite perplexing, which get further complicated with polyploidy. Here, we show that the allotetraploid Brassica juncea comprises multiple homologs of G-protein genes, encoding six BjuGβ and ten highly divergent BjuGγ subunit proteins, later being classified into type-A1, type-A2 and type-C Gγ proteins. The encoded BjuGβ and BjuGγ proteins shared close evolutionary relationship and have retained distinct spatio-temporal expression patterns during plant developmental stages and in response to the necrotrophic pathogen, Sclerotinia sclerotiorum. RNAi based suppression of BjuGβ and BjuGγ genes suggested functional overlap and selectivity of BjuGβs with three distinct BjuGγ type subunits, to regulate plant height (BjuGβγA2 and BjuGβγC), seed weight (BjuGβGγA1 and BjuGβGγC), silique size (BjuGβGγC) and pathogen response (BjuGβGγA1 and BjuGβGγC). Further, the triplicated BjuGβ genes, formed due to Brassica specific whole-genome-triplication event, showed differential involvement during pathogen response, wherein overexpression of BjuGβ2 displayed higher resistance to Sclerotinia infection. Taken together, our study demonstrates that multiple BjuGβ and BjuGγ proteins have retained distinct spatio-temporal expression and functional selectivity to regulate specific plant growth and defence traits in the oilseed B. juncea.
Collapse
Affiliation(s)
- Gulab Chand Arya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|