1
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
2
|
Jiang Y, Jin Y, Shan Y, Zhong Q, Wang H, Shen C, Feng S. Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1407625. [PMID: 38993935 PMCID: PMC11236614 DOI: 10.3389/fpls.2024.1407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Yan Jiang
- Hangzhou Normal University, Hangzhou, China
| | - Yanyun Jin
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yiyi Shan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Quanzhou Zhong
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Shangguo Feng
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Zhao J, Xu Y, Zhang Z, Zhao M, Li K, Wang F, Sun K. Genome-wide analysis of the MADS-box gene family of sea buckthorn ( Hippophae rhamnoides ssp. sinensis) and their potential role in floral organ development. FRONTIERS IN PLANT SCIENCE 2024; 15:1387613. [PMID: 38938643 PMCID: PMC11208494 DOI: 10.3389/fpls.2024.1387613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Sea buckthorn (Hippophae rhamnoides ssp. sinensis) is a deciduous shrub or small tree in the Elaeagnaceae family. It is dioecious, featuring distinct structures in female and male flowers. The MADS-box gene family plays a crucial role in flower development and differentiation of floral organs in plants. However, systematic information on the MADS-box family in sea buckthorn is currently lacking. This study presents a genome-wide survey and expression profile of the MADS-box family of sea buckthorn. We identified 92 MADS-box genes in the H. rhamnoides ssp. Sinensis genome. These genes are distributed across 12 chromosomes and classified into Type I (42 genes) and Type II (50 genes). Based on the FPKM values in the transcriptome data, the expression profiles of HrMADS genes in male and female flowers of sea buckthorn showed that most Type II genes had higher expression levels than Type I genes. This suggesting that Type II HrMADS may play a more significant role in sea buckthorn flower development. Using the phylogenetic relationship between sea buckthorn and Arabidopsis thaliana, the ABCDE model genes of sea buckthorn were identified and some ABCDE model-related genes were selected for qRT-PCR analysis in sea buckthorn flowers and floral organs. Four B-type genes may be involved in the identity determination of floral organs in male flowers, and D-type genes may be involved in pistil development. It is hypothesized that ABCDE model genes may play an important role in the identity of sea buckthorn floral organs. This study analyzed the role of MADS-box gene family in the development of flower organs in sea buckthorn, which provides an important theoretical basis for understanding the regulatory mechanism of sex differentiation in sea buckthorn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
4
|
Li J, Wang L, Chen X, Zeng L, Su Y, Liu Z. Characterization of Two AGAMOUS-like Genes and Their Promoters from the Cymbidium faberi (Orchidaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2740. [PMID: 37514354 PMCID: PMC10386245 DOI: 10.3390/plants12142740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Arabidopsis AGAMOUS (AG) play roles in determining stamens' and carpels' identities, floral meristem determinacy, and repression of the A-function. Gynostemium fused by stamens and carpels is a characteristic reproductive structure in orchid flowers, which shows a considerable difference from the reproductive organs of eudicots and other monocot species. The molecular basis of orchid gynostemium development remains largely unknown. Here, we report the identification and functional characterization of two AG-like genes, CyfaAG1 and CyfaAG2, and their promoters from C. faberi. Both CyfaAG1 and CyfaAG2 are highly expressed in the anther cap, gynostemium, and ovary. Ectopic expression of CyfaAG1 and CyfaAG2 promotes early flowering of wild-type Arabidopsis. Moreover, ectopic expression of CyfaAG1 completely rescues floral defects in the Arabidopsis ag-1 mutant, while ectopic expression of CyfaAG2 only completes filament and carpel development. Our findings suggest that CyfaAG1 acts as an evolutionarily conserved C-function gene in determining reproductive organ identity and mediating floral meristem determinacy. CyfaAG2 redundantly mediates the C-function in floral meristem determinacy and gynostemium development. Our results provided more details to understand how the C-class function has been partitioned in orchids, and the roles of two AG orthologs in regulating gynostemium development in C. faberi.
Collapse
Affiliation(s)
- Jiayi Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiangjian Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lingtian Zeng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yalan Su
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
5
|
Genome-Wide Identification and Characterization of Copper Chaperone for Superoxide Dismutase (CCS) Gene Family in Response to Abiotic Stress in Soybean. Int J Mol Sci 2023; 24:ijms24065154. [PMID: 36982229 PMCID: PMC10048983 DOI: 10.3390/ijms24065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.
Collapse
|
6
|
Liu H, Li J, Gong P, He C. The origin and evolution of carpels and fruits from an evo-devo perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:283-298. [PMID: 36031801 DOI: 10.1111/jipb.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity. The carpel is integral to a flower and develops into fruits after fertilization, while the perianth, consisting of the calyx and corolla, is decorative to facilitate pollination and protect the internal organs, including the carpels and stamens. Therefore, the nature of flower origin is carpel and stamen origin, which represents one of the greatest and fundamental unresolved issues in plant evolutionary biology. Here, we briefly summarize the main progress and key genes identified for understanding floral development, focusing on the origin and development of the carpels. Floral ABC models have played pioneering roles in elucidating flower development, but remain insufficient for resolving flower and carpel origin. The genetic basis for carpel origin and subsequent diversification leading to fruit diversity also remains elusive. Based on current research progress and technological advances, simplified floral models and integrative evolutionary-developmental (evo-devo) strategies are proposed for elucidating the genetics of carpel origin and fruit evolution. Stepwise birth of a few master regulatory genes and subsequent functional diversification might play a pivotal role in these evolutionary processes. Among the identified transcription factors, AGAMOUS (AG) and CRABS CLAW (CRC) may be the two core regulatory genes for carpel origin as they determine carpel organ identity, determinacy, and functionality. Therefore, a comparative identification of their protein-protein interactions and downstream target genes between flowering and non-flowering plants from an evo-devo perspective may be primary projects for elucidating carpel origin and development.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
8
|
Zhong S, Yang H, Guan J, Shen J, Ren T, Li Z, Tan F, Li Q, Luo P. Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms. Genes (Basel) 2022; 13:genes13101777. [PMID: 36292662 PMCID: PMC9601569 DOI: 10.3390/genes13101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal angiosperms and core eudicots. Akebia trifoliata is an important member of the basal eudicot group. To study the early evolution of angiosperms, we identified and characterized the MADS-Box gene family on the whole-genome level of A. trifoliata. There were 47 MADS-box genes (13 type I and 34 type II genes) in the A. trifoliata genome; type I genes had a greater gene length and coefficient of variation and a smaller exon number than type II genes. A total of 27 (57.4%) experienced whole or segmental genome duplication and purifying selection. A transcriptome analysis suggested that three and eight genes were involved in whole fruit and seed development, respectively. The diversification and phylogenetic analysis of 1479 type II MADS-box genes of 22 angiosperm species provided some clues indicating that a γ whole genome triplication event of eudicots possibility experienced a two-step process. These results are valuable for improving A. trifoliata fruit traits and theoretically elucidating evolutionary processes of angiosperms, especially eudicots.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Li
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Chongqing 408000, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
9
|
Zhang J, Ma H. Identification and expression analysis of the MADS-box genes of Kentucky bluegrass during inflorescence development. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1359-1374. [PMID: 36051235 PMCID: PMC9424482 DOI: 10.1007/s12298-022-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
MADS-box genes play vital roles in multiple biological processes of plants growth and development, especially inflorescence development. In the present study, a comprehensive investigation into the identification and classification of MADS-box genes in Kentucky bluegrass (Poa pratensis) has not been reported. Here, based on the transcriptome of inflorescence, we identified 44 PpMADS-box genes, and gave an overview of the physicochemical properties, phylogeny, protein structures, and potential functions of the proteins encoded by these genes through various bioinformatics software for the first time. Analysis of physicochemical properties revealed that most PpMADS-box were alkaline proteins and possessed similar conserved motifs. Additionally, it was demonstrated that 33 PpMADS-box proteins without signal peptide, leading peptide, transmembrane structure and located in the nucleus were not transported or secreted, so directly played transcriptional regulatory roles in the nucleus. Then, peptide sequences BLAST search and analysis of phylogenetic relationships with MADS-box proteins of P. pratensis, Arabidopsis thaliana, and Oryza sativa were performed. It was found that 44 PpMADS-box proteins were separated into 33 MIKC-type (3 BS, 1 AGL17, 8 AP3/P2, 3 AP1, 5 SEP, 6 SOC and 7 AG genes, respectvely) and 11 type I-type, which include 7 Mγ and 4 Mα. Furthermore, the relative expression levels of the selected 12 genes (MADS3, 15, 16, 17, 18, 20, 24, 27, 30, 36, 38 and 40) at the booting stage, pre-anthesis, anthesis, post-anthesis, and seed filling stage of inflorescences, as well as leaves and roots of the corresponding stages of inflorescences were analyzed, showing that most PpMADS-box genes were highly expressed mainly in young leaves and later inflorescences, and had complex patters in roots. Morever, except for PpMADS30 being highly expressed in the leaves, others were significantly highly expressed in inflorescence and/ or roots, demonstrating PpMADS-box genes also regulate leaves and roots development in plant. This study provides valuable insights into the MADS-box family genes in Kentucky bluegrass and its potential functional characteristics, expression pattern, and evolution in floral organogenesis and even reproduction development. @media print { .ms-editor-squiggler { display:none !important; } } .ms-editor-squiggler { all: initial; display: block !important; height: 0px !important; width: 0px !important; }. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01216-1.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 Gansu China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 Gansu China
| |
Collapse
|