1
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
2
|
Çelik Ş. Bibliometric analysis of horticultural crop secondary metabolism. Heliyon 2024; 10:e26079. [PMID: 38390077 PMCID: PMC10881373 DOI: 10.1016/j.heliyon.2024.e26079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The goal of the study was to examine the trends in recent years by analyzing 750 studies, 3619 authors, and 166 sources with the statement "Horticultural Crop Secondary Metabolism" in the article title published within the scope of SCI-Expanded and "Scopus" journals in between the years 2010 and 2023. In this case, the Web of Science Core Collection database was scanned under the heading "Horticultural Crop Secondary Metabolism", and bibliometric information was gathered. In order to advance research on horticulture crops, current problems and recommend solutions within "Horticultural Crop Secondary Metabolism" were identified in this study. The number of publications, publication kinds, reference analyses, total citations per year, most common words, most often cited local authors, most pertinent affiliations, and most pertinent sources were all examined in relation to the research. According to the findings, Horticulture Research, Frontiers in Plant Science, Plant Physiology and Biochemistry: PPB, Scientific Reports, and BMC Genomics are the journals that publish the most papers on "Horticultural Crop Secondary Metabolism". The phrases "gene expression regulation plant", "transcriptome", and "plant proteins" are used most frequently. Because of this, the increase of bibliometrics study can be very beneficial by serving as a catalyst for horticulture crop research.
Collapse
Affiliation(s)
- Şenol Çelik
- Biometry Genetics Unit, Department of Animal Science, Agricultural Faculty, Bingöl University, Bingöl, Turkey
| |
Collapse
|
3
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
4
|
Vasyutkina EA, Yugay YA, Grigorchuk VP, Grishchenko OV, Sorokina MR, Yaroshenko YL, Kudinova OD, Stepochkina VD, Bulgakov VP, Shkryl YN. Effect of Stress Signals and Ib-rolB/C Overexpression on Secondary Metabolite Biosynthesis in Cell Cultures of Ipomoea batatas. Int J Mol Sci 2022; 23:ijms232315100. [PMID: 36499423 PMCID: PMC9740395 DOI: 10.3390/ijms232315100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Ipomoea batatas is a vital root crop and a source of caffeoylquinic acid derivatives (CQAs) with potential health-promoting benefits. As a naturally transgenic plant, I. batatas contains cellular T-DNA (cT-DNA) sequence homologs of the Agrobacterium rhizogenes open reading frame (ORF)14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n of unknown function. This study aimed to evaluate the effect of abiotic stresses (temperature, ultraviolet, and light) and chemical elicitors (methyl jasmonate, salicylic acid, and sodium nitroprusside) on the biosynthesis of CQAs and cT-DNA gene expression in I. batatas cell culture as a model system. Among all the applied treatments, ultraviolet irradiation, methyl jasmonate, and salicylic acid caused the maximal accumulation of secondary compounds. We also discovered that I. batatas cT-DNA genes were not expressed in cell culture, and the studied conditions weakly affected their transcriptional levels. However, the Ib-rolB/C gene expressed under the strong 35S CaMV promoter increased the CQAs content by 1.5-1.9-fold. Overall, our results show that cT-DNA-encoded transgenes are not involved in stress- and chemical elicitor-induced CQAs accumulation in cell cultures of I. batatas. Nevertheless, overaccumulation of RolB/RolC transcripts potentiates the secondary metabolism of sweet potatoes through a currently unknown mechanism. Our study provides new insights into the molecular mechanisms linked with CQAs biosynthesis in cell culture of naturally transgenic food crops, i.e., sweet potato.
Collapse
Affiliation(s)
- Elena A. Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Yulia A. Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Olga V. Grishchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Maria R. Sorokina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Yulia L. Yaroshenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Olesya D. Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Varvara D. Stepochkina
- Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Victor P. Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Yury N. Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
- Correspondence: ; Tel.: +7-4232-312129; Fax: +7-4232-310193
| |
Collapse
|
5
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
6
|
Capsicum Leaves under Stress: Using Multi-Omics Analysis to Detect Abiotic Stress Network of Secondary Metabolism in Two Species. Antioxidants (Basel) 2022; 11:antiox11040671. [PMID: 35453356 PMCID: PMC9029244 DOI: 10.3390/antiox11040671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The plant kingdom contains an enormous diversity of bioactive compounds which regulate plant growth and defends against biotic and abiotic stress. Some of these compounds, like flavonoids, have properties which are health supporting and relevant for industrial use. Many of these valuable compounds are synthesized in various pepper (Capsicum sp.) tissues. Further, a huge amount of biomass residual remains from pepper production after harvest, which provides an important opportunity to extract these metabolites and optimize the utilization of crops. Moreover, abiotic stresses induce the synthesis of such metabolites as a defense mechanism. Two different Capsicum species were therefore exposed to chilling temperature (24/18 ℃ vs. 18/12 ℃), to salinity (200 mM NaCl), or a combination thereof for 1, 7 and 14 days to investigate the effect of these stresses on the metabolome and transcriptome profiles of their leaves. Both profiles in both species responded to all stresses with an increase over time. All stresses resulted in repression of photosynthesis genes. Stress involving chilling temperature induced secondary metabolism whereas stresses involving salt repressed cell wall modification and solute transport. The metabolome analysis annotated putatively many health stimulating flavonoids (apigetrin, rutin, kaempferol, luteolin and quercetin) in the Capsicum biomass residuals, which were induced in response to salinity, chilling temperature or a combination thereof, and supported by related structural genes of the secondary metabolism in the network analysis.
Collapse
|
7
|
Eiteneuer C, Velasco D, Atemia J, Wang D, Schwacke R, Wahl V, Schrader A, Reimer JJ, Fahrner S, Pieruschka R, Schurr U, Usadel B, Hallab A. GXP: Analyze and Plot Plant Omics Data in Web Browsers. PLANTS 2022; 11:plants11060745. [PMID: 35336631 PMCID: PMC8952246 DOI: 10.3390/plants11060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing and metabolomics have become very cost and work efficient and are integrated into an ever-growing number of life science research projects. Typically, established software pipelines analyze raw data and produce quantitative data informing about gene expression or concentrations of metabolites. These results need to be visualized and further analyzed in order to support scientific hypothesis building and identification of underlying biological patterns. Some of these tools already exist, but require installation or manual programming. We developed “Gene Expression Plotter” (GXP), an RNAseq and Metabolomics data visualization and analysis tool entirely running in the user’s web browser, thus not needing any custom installation, manual programming or uploading of confidential data to third party servers. Consequently, upon receiving the bioinformatic raw data analysis of RNAseq or other omics results, GXP immediately enables the user to interact with the data according to biological questions by performing knowledge-driven, in-depth data analyses and candidate identification via visualization and data exploration. Thereby, GXP can support and accelerate complex interdisciplinary omics projects and downstream analyses. GXP offers an easy way to publish data, plots, and analysis results either as a simple exported file or as a custom website. GXP is freely available on GitHub (see introduction)
Collapse
Affiliation(s)
- Constantin Eiteneuer
- IBG-2 Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany; (C.E.); (D.W.); (S.F.); (R.P.); (U.S.)
| | - David Velasco
- Faculty of Natural Sciences, Norges Teknisk-Naturvitenskapelige Universitet, 7034 Trondheim, Norway;
| | - Joseph Atemia
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany; (J.A.); (R.S.); (B.U.)
| | - Dan Wang
- IBG-2 Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany; (C.E.); (D.W.); (S.F.); (R.P.); (U.S.)
| | - Rainer Schwacke
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany; (J.A.); (R.S.); (B.U.)
| | - Vanessa Wahl
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany;
| | - Andrea Schrader
- Institute for Biology I, RWTH Aachen University, 52062 Aachen, Germany; (A.S.); (J.J.R.)
| | - Julia J. Reimer
- Institute for Biology I, RWTH Aachen University, 52062 Aachen, Germany; (A.S.); (J.J.R.)
- Faculty of Technology, University of Applied Science Emden/Leer, Molecular Biosciences, 26723 Emden, Germany
| | - Sven Fahrner
- IBG-2 Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany; (C.E.); (D.W.); (S.F.); (R.P.); (U.S.)
| | - Roland Pieruschka
- IBG-2 Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany; (C.E.); (D.W.); (S.F.); (R.P.); (U.S.)
| | - Ulrich Schurr
- IBG-2 Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany; (C.E.); (D.W.); (S.F.); (R.P.); (U.S.)
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany; (J.A.); (R.S.); (B.U.)
| | - Asis Hallab
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany; (J.A.); (R.S.); (B.U.)
- Correspondence:
| |
Collapse
|