1
|
Li Z, Zhou C, Zhao S, Zhang J, Liu X, Sang M, Qin X, Yang Y, Han G, Kuang T, Shen JR, Wang W. Structural and functional properties of different types of siphonous LHCII trimers from an intertidal green alga Bryopsis corticulans. Structure 2023; 31:1247-1258.e3. [PMID: 37633266 DOI: 10.1016/j.str.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Light-harvesting complexes of photosystem II (LHCIIs) in green algae and plants are vital antenna apparatus for light harvesting, energy transfer, and photoprotection. Here we determined the structure of a siphonous-type LHCII trimer from the intertidal green alga Bryopsis corticulans by X-ray crystallography and cryo-electron microscopy (cryo-EM), and analyzed its functional properties by spectral analysis. The Bryopsis LHCII (Bry-LHCII) structures in both homotrimeric and heterotrimeric form show that green light-absorbing siphonaxanthin and siphonein occupied the sites of lutein and violaxanthin in plant LHCII, and two extra chlorophylls (Chls) b replaced Chls a. Binding of these pigments expands the blue-green light absorption of B. corticulans in the tidal zone. We observed differences between the Bry-LHCII homotrimer crystal and cryo-EM structures, and also between Bry-LHCII homotrimer and heterotrimer cryo-EM structures. These conformational changes may reflect the flexibility of Bry-LHCII, which may be required to adapt to light fluctuations from tidal rhythms.
Collapse
Affiliation(s)
- Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinyang Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xueyang Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
2
|
Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile. Sci Rep 2022; 12:8461. [PMID: 35589761 PMCID: PMC9120457 DOI: 10.1038/s41598-022-11572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
The siphonaxanthin-siphonein-Chl-a/b-protein (SCP) is the light-harvesting complex of the marine alga Codium fragile. Its structure resembles that of the major light-harvesting complexes of higher plants, LHC II, yet it features a reversed Chl a:Chl b ratio and it accommodates other variants of carotenoids. We have recorded the fluorescence emission spectra and fluorescence lifetimes from ensembles and single SCP complexes for three different scenarios of handling the samples. While the data obtained from ensembles of SCP complexes yield equivalent results, those obtained from single SCP complexes featured significant differences as a function of the sample history. We ascribe this discrepancy to the different excitation intensities that have been used for ensemble and single complex spectroscopy, and conclude that the SCP complexes undergo an aging process during storage. This process is manifested as a lowering of energetic barriers within the protein, enabling thermal activation of conformational changes at room temperature. This in turn leads to the preferential population of a red-shifted state that features a significant decrease of the fluorescence lifetime.
Collapse
|
3
|
Yuan H, Jiang A, Fang H, Chen Y, Guo Z. Optical properties of natural small molecules and their applications in imaging and nanomedicine. Adv Drug Deliv Rev 2021; 179:113917. [PMID: 34384827 DOI: 10.1016/j.addr.2021.113917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Natural small molecules derived from plants have fascinated scientists for centuries due to their practical applications in various fields, especially in nanomedicine. Some of the natural molecules were found to show intrinsic optical features such as fluorescence emission and photosensitization, which could be beneficial to provide spatial temporal information and help tracking the drugs in biological systems. Much efforts have been devoted to the investigation of optical properties and practical applications of natural molecules. In this review, optical properties of natural small molecules and their applications in fluorescence imaging, and theranostics will be summarized. First, we will introduce natural small molecules with different fluorescence emission, ranging from blue to near infrared emission. Second, imaging applications in biological samples will be covered. Third, we will discuss the applications of theranostic nanomedicines or drug delivering systems containing fluorescent natural molecules acting as imaging agents or photosensitizers. Finally, future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Ao Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
4
|
Streckaite S, Llansola-Portoles MJ, Pascal AA, Ilioaia C, Gall A, Seki S, Fujii R, Robert B. Pigment structure in the light-harvesting protein of the siphonous green alga Codium fragile. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148384. [PMID: 33545114 DOI: 10.1016/j.bbabio.2021.148384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 11/15/2022]
Abstract
The siphonaxanthin-siphonein-chlorophyll-a/b-binding protein (SCP), a trimeric light-harvesting complex isolated from photosystem II of the siphonous green alga Codium fragile, binds the carotenoid siphonaxanthin (Sx) and/or its ester siphonein in place of lutein, in addition to chlorophylls a/b and neoxanthin. SCP exhibits a higher content of chlorophyll b (Chl-b) than its counterpart in green plants, light-harvesting complex II (LHCII), increasing the relative absorption of blue-green light for photosynthesis. Using low temperature absorption and resonance Raman spectroscopies, we reveal the presence of two non-equivalent Sx molecules in SCP, and assign their absorption peaks at 501 and 535 nm. The red-absorbing Sx population exhibits a significant distortion that is reminiscent of lutein 2 in trimeric LHCII. Unexpected enhancement of the Raman modes of Chls-b in SCP allows an unequivocal description of seven to nine non-equivalent Chls-b, and six distinct Chl-a populations in this protein.
Collapse
Affiliation(s)
- Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cristian Ilioaia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Andrew Gall
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Soichiro Seki
- Osaka City University, Graduate School of Science, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
| | - Ritsuko Fujii
- Osaka City University, Graduate School of Science, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan; Osaka City University, The OCU Research Center for Artificial Photosynthesis, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Borisova-Mubarakshina MM, Tsygankov AA, Tomo T, Allakhverdiev SI, Eaton-Rye JJ, Govindjee G. International conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2019": in honor of Tingyun Kuang, Anthony Larkum, Cesare Marchetti, and Kimiyuki Satoh. PHOTOSYNTHESIS RESEARCH 2020; 146:5-15. [PMID: 31758403 DOI: 10.1007/s11120-019-00687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The 10th International Conference on «Photosynthesis and Hydrogen Energy Research for Sustainability-2019» was held in honor of Tingyun Kuang (China), Anthony Larkum (Australia), Cesare Marchetti (Italy), and Kimiyuki Satoh (Japan), in St. Petersburg (Russia) during June 23-28, 2019. The official conference organizers from the Russian side were from the Institute of Basic Biological Problems of the Russian Academy of Sciences (IBBP RAS), Russian Society for Photobiology (RSP), and the Komarov Botanical Institute of the Russian Academy of Sciences ([K]BIN RAS). This conference was organized with the help of Monomax Company, a member of the International Congress Convention Association (ICCA), and was supported by the Ministry of Education and Science of the Russian Federation. Here, we provide a brief description of the conference, its scientific program, as well as a brief introduction and key contributions of the four honored scientists. Further, we emphasize the recognition given, at this conference, to several outstanding young researchers, from around the World, for their research in the area of our conference. A special feature of this paper is the inclusion of photographs provided by one of us (Tatsuya Tomo). Lastly, we urge the readers to watch for information on the next 11th conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2021," to be held in Bulgaria in 2021.
Collapse
Affiliation(s)
| | - Anatoly A Tsygankov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-Ku, Tokyo, 162-8601, Japan
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- K.A. Timiryazev. Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St, Moscow, Russia, 127276
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Mar Drugs 2020; 18:E453. [PMID: 32872415 PMCID: PMC7551860 DOI: 10.3390/md18090453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Loïc Le Déan
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nathalie Schreiber
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Pierre Brun
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| |
Collapse
|
7
|
Akhtar P, Nowakowski PJ, Wang W, Do TN, Zhao S, Siligardi G, Garab G, Shen JR, Tan HS, Lambrev PH. Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148191. [PMID: 32201306 DOI: 10.1016/j.bbabio.2020.148191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Hungary; ELI-ALPS, ELI Nonprofit Ltd., Szeged, Hungary
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Wenda Wang
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China
| | - Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Songhao Zhao
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Győző Garab
- Biological Research Centre, Szeged, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Czech Republic
| | - Jian-Ren Shen
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
| | | |
Collapse
|
8
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
9
|
Giovagnetti V, Han G, Ware MA, Ungerer P, Qin X, Wang WD, Kuang T, Shen JR, Ruban AV. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae). PLANTA 2018; 247:1293-1306. [PMID: 29460179 PMCID: PMC5945744 DOI: 10.1007/s00425-018-2854-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/20/2018] [Indexed: 05/18/2023]
Abstract
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Petra Ungerer
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wen-Da Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Naka, Okayama, 700-8530, Japan.
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
10
|
Lu C, Shen JR, Zhang L. Special issue on Regulation of the Photosynthetic Systems in honor of Tingyun Kuang. PHOTOSYNTHESIS RESEARCH 2015; 126:185-188. [PMID: 26354782 DOI: 10.1007/s11120-015-0191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Department of Biology, Faculty of Science, Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, 1-1, Naka 3-Chome, Tsushima, Okayama, 700-8530, Japan.
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
11
|
Siphonaxanthin, a green algal carotenoid, as a novel functional compound. Mar Drugs 2014; 12:3660-8. [PMID: 24950294 PMCID: PMC4071595 DOI: 10.3390/md12063660] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/17/2022] Open
Abstract
Siphonaxanthin is a specific keto-carotenoid in green algae whose bio-functional properties are yet to be identified. This review focuses on siphonaxanthin as a bioactive compound and outlines the evidence associated with functionality. Siphonaxanthin has been reported to potently inhibit the viability of human leukemia HL-60 cells via induction of apoptosis. In comparison with fucoxanthin, siphonaxanthin markedly reduced cell viability as early as 6 h after treatment. The cellular uptake of siphonaxanthin was 2-fold higher than fucoxanthin. It has been proposed that siphonaxanthin possesses significant anti-angiogenic activity in studies using human umbilical vein endothelial cells and rat aortic ring. The results of these studies suggested that the anti-angiogenic effect of siphonaxanthin is due to the down-regulation of signal transduction by fibroblast growth factor receptor-1 in vascular endothelial cells. Siphonaxanthin also exhibited inhibitory effects on antigen-induced degranulation of mast cells. These findings open up new avenues for future research on siphonaxanthin as a bioactive compound, and additional investigation, especially in vivo studies, are required to validate these findings. In addition, further studies are needed to determine its bioavailability and metabolic fate.
Collapse
|
12
|
Wang W, Qin X, Sang M, Chen D, Wang K, Lin R, Lu C, Shen JR, Kuang T. Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2013; 117:267-79. [PMID: 23479128 DOI: 10.1007/s11120-013-9808-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/02/2013] [Indexed: 05/11/2023]
Abstract
Carotenoids with conjugated carbonyl groups possess special photophysical properties which have been studied in some water-soluble light-harvesting proteins (Polívka and Sundström, Chem Rev 104:2021-2071, 2004). However, siphonaxanthin-type light-harvesting complexes of photosystem II (LHCII) in siphonous green alga have received fewer studies. In the present study, we determined sequences of genes for several Bryopsis corticulans Lhcbm proteins, which showed that they belong to the group of major LHCII and diverged early from green algae and higher plants. Analysis of pigment composition indicated that this siphonaxanthin-type LHCII contained in total 3 siphonaxanthin and siphonein but no lutein and violaxanthin. In addition, 2 chlorophylls a in higher plant LHCII were replaced by chlorophyll b. These changes led to an increased absorption in green and blue-green light region compared with higher plant LHCII. The binding sites for chlorophylls, siphonaxanthin, and siphonein were suggested based on the structural comparison with that of higher plant LHCII. All of the ligands for the chlorophylls were completely conserved, suggesting that the two chlorophylls b were replaced by chlorophyll a without changing their binding sites in higher plant LHCII. Comparisons of the absorption spectra of isolated siphonaxanthin and siphonein in different organic solutions and the effect of heat treatment suggested that these pigments existed in a low hydrophobic protein environment, leading to an enhancement of light harvesting in the green light region. This low hydrophobic protein environment was maintained by the presence of more serine and threonine residues in B. corticulans LHCII. Finally, esterization of siphonein may also contribute to the enhanced harvesting of green light.
Collapse
Affiliation(s)
- Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1140-1144. [PMID: 20637577 DOI: 10.1016/j.phymed.2010.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/26/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Since anti-angiogenic therapy has becoming a promising approach in the prevention of cancer and related diseases, the present study was aimed to examine the anti-angiogenic effect of siphonaxanthin from green alga (Codium fragile) in cell culture model systems and ex vivo approaches using human umbilical vein endothelial cells (HUVECs) and rat aortic ring, respectively. Siphonaxanthin significantly suppressed HUVEC proliferation (p<0.05) at the concentration of 2.5 μM (50% as compared with control) and above, while the effect on chemotaxis was not significant. Siphonaxanthin exhibited strong inhibitory effect on HUVEC tube formation. It suppressed the formation of tube length by 44% at the concentration of 10 μM, while no tube formation was observed at 25 μM, suggesting that it could be due to the suppression of angiogenic mediators. The ex vivo angiogenesis assay exhibited reduced microvessel outgrowth in a dose dependent manner and the reduction was significant at more than 2.5 μM. Our results imply a new insight on the novel function of siphonaxanthin in preventing angiogenesis related diseases.
Collapse
Affiliation(s)
- Ponesakki Ganesan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|