1
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Amin M, Askerka M, Batista VS, Brudvig GW, Gunner MR. X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2017; 121:9382-9388. [DOI: 10.1021/acs.jpcb.7b08371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Muhamed Amin
- Center
for Photonics and Smart Materials, Zewail City of Science and Technology, Sheikh
Zayed District, 6th of October City, 12588 Giza, Egypt
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mikhail Askerka
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M. R. Gunner
- Department
of Physics, City College of New York, New York, New York 10031, United States
| |
Collapse
|
3
|
Vaddypally S, Jovinelli DJ, McKendry IG, Zdilla MJ. Covalent Metal-Metal-Bonded Mn 4 Tetrahedron Inscribed within a Four-Coordinate Manganese Cubane Cluster, As Evidenced by Unexpected Temperature-Independent Diamagnetism. Inorg Chem 2017; 56:3733-3737. [PMID: 28306252 DOI: 10.1021/acs.inorgchem.7b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures of the manganese(IV) cubane cluster Mn(μ3-NtBu)4(NtBu)4 (1) and its one-electron-oxidized analogue, the 3:1 MnIV/MnV cluster [Mn(μ3-NtBu)4(NtBu)4]+[PF6]- (1+[PF6]), are described. The S = 0 spin quantum number of 1 is explained by a diamagnetic electronic structure where all metal-based d electrons are paired in Mn-Mn bonding orbitals. Temperature- and power-dependent studies of the S = 1/2 electron paramagnetic resonance signal of 1+ are consistent with an electronic structure described as a delocalized one-electron radical.
Collapse
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Daniel J Jovinelli
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ian G McKendry
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J Zdilla
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. The open-cubane oxo–oxyl coupling mechanism dominates photosynthetic oxygen evolution: a comprehensive DFT investigation on O–O bond formation in the S4state. Phys Chem Chem Phys 2017; 19:13909-13923. [DOI: 10.1039/c7cp01617d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How is O2created in nature? Comprehensive DFT investigations determine the dominance of the open-cubane oxo–oxyl coupling mechanism over alternative possibilities.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
5
|
Askerka M, Ho J, Batista ER, Gascón JA, Batista VS. The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes. Methods Enzymol 2016; 577:443-81. [PMID: 27498648 PMCID: PMC5304415 DOI: 10.1016/bs.mie.2016.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and catalytic sites embedded in macrobiomolecules (eg, proteins and nucleic acids). QM/MM methodologies are highly efficient since they implement quantum chemistry methods for modeling only the portion of the system involving bond-breaking/forming processes (QM layer), as influenced by the surrounding molecular environment described in terms of molecular mechanics force fields (MM layer). Some of the limitations of QM/MM methods when polarization effects are not explicitly considered include the approximate treatment of electrostatic interactions between QM and MM layers. Here, we review recent advances in the development of computational protocols that allow for rigorous modeling of electrostatic interactions in biomacromolecules and structural refinement, beyond the common limitations of QM/MM hybrid methods. We focus on photosystem II (PSII) with emphasis on the description of the oxygen-evolving complex (OEC) and its high-resolution extended X-ray absorption fine structure spectra (EXAFS) in conjunction with Monte Carlo structural refinement. Furthermore, we review QM/MM structural refinement studies of DNA G4 quadruplexes with embedded monovalent cations and direct comparisons to NMR data.
Collapse
Affiliation(s)
- M Askerka
- Yale University, New Haven, CT, United States
| | - J Ho
- Yale University, New Haven, CT, United States
| | - E R Batista
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - J A Gascón
- University of Connecticut, Storrs, CT, United States
| | - V S Batista
- Yale University, New Haven, CT, United States.
| |
Collapse
|
6
|
Chemical, electrochemical and photochemical molecular water oxidation catalysts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:71-81. [DOI: 10.1016/j.jphotobiol.2014.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022]
|
7
|
Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K. The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Trans 2015; 43:13122-35. [PMID: 25046248 DOI: 10.1039/c4dt01367k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eighteen Mn complexes with N-donor and carboxylate ligands have been synthesized and characterized. Three Mn complexes among them are new and are reported for the first time. The reactions of oxygen evolution in the presence of oxone (2KHSO5·KHSO4·K2SO4) and cerium(iv) ammonium nitrate catalyzed by these complexes are studied and characterized by UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy, membrane-inlet mass spectrometry and electrochemistry. Some of these complexes evolve oxygen in the presence of oxone as a primary oxidant. CO2 and MnO4(-) are other products of these reactions. Based on spectroscopic studies, the true catalysts for oxygen evolution in these reactions are different. We proposed that for the oxygen evolution reactions in the presence of oxone, the true catalysts are both high valent Mn complexes and Mn oxides, but for the reactions in the presence of cerium(iv) ammonium nitrate, the active catalyst is most probably a Mn oxide.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
9
|
Davis KM, Pushkar YN. Structure of the Oxygen Evolving Complex of Photosystem II at Room Temperature. J Phys Chem B 2015; 119:3492-8. [PMID: 25621994 DOI: 10.1021/acs.jpcb.5b00452] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine M. Davis
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Yulia N. Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Hamilton CR, Gau MR, Baglia RA, McWilliams SF, Zdilla MJ. Mechanistic elucidation of the stepwise formation of a tetranuclear manganese pinned butterfly cluster via N-N bond cleavage, hydrogen atom transfer, and cluster rearrangement. J Am Chem Soc 2014; 136:17974-86. [PMID: 25424971 DOI: 10.1021/ja508244x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mechanistic pathway for the formation of the structurally characterized manganese-amide-hydrazide pinned butterfly complex, Mn4(μ3-PhN-NPh-κ(3)N,N')2(μ-PhN-NPh-κ(2)-N,N')(μ-NHPh)2L4 (L = THF, py), is proposed and supported by the use of labeling studies, kinetic measurements, kinetic competition experiments, kinetic isotope effects, and hydrogen atom transfer reagent substitution, and via the isolation and characterization of intermediates using X-ray diffraction and electron paramagnetic resonance spectroscopy. The data support a formation mechanism whereby bis[bis(trimethylsilyl)amido]manganese(II) (Mn(NR2)2, where R = SiMe3) reacts with N,N'-diphenylhydrazine (PhNHNHPh) via initial proton transfer, followed by reductive N-N bond cleavage to form a long-lived Mn(IV) imido multinuclear complex. Coordinating solvents activate this cluster for abstraction of hydrogen atoms from an additional equivalent of PhNHNHPh resulting in a Mn(II)phenylamido dimer, Mn2(μ-NHPh)2(NR2)2L2. This dimeric complex further assembles in fast steps with two additional equivalents of PhNHNHPh replacing the terminal silylamido ligands with η(1)-hydrazine ligands to give a dimeric Mn2(μ-NHPh)2(PhN-NHPh)2L4 intermediate, and finally, the addition of two additional equivalents of Mn(NR2)2 and PhNHNHPh gives the pinned butterfly cluster.
Collapse
Affiliation(s)
- Clifton R Hamilton
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | | | | | | | | |
Collapse
|
11
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Gau MR, Hamilton CR, Zdilla MJ. Preparation of a "twisted basket" Mn(4)N(8) cluster: a two-hydrogen-atom reduced analogue of the Mn(4)N(8) pinned butterfly. Chem Commun (Camb) 2014; 50:7780-2. [PMID: 24865224 DOI: 10.1039/c4cc02872d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn4(μ-NHPh)4(μ-PhNNPh-κ(2)N,N')2(py)4 () is synthesized via self assembly from dimeric Mn2(μ-NHPh)2(NR2)2 and PhNHNHPh (R = SiMe3). This cluster represents the N-N cleaved version of the previously-reported Mn4(μ-NHPh)2(μ3-PhNNPh-κ(3)N,N')2(μ-PhNNPh-κ(2)N,N')(py)4 "pinned butterfly" cluster (), formally reduced by two hydrogen atoms. Cluster may be converted to by addition of N,N'-diphenylhydrazine as a two-electron reductant.
Collapse
Affiliation(s)
- Michael R Gau
- Temple University, Department of Chemistry, 1901 N. 13th St., Philadelphia, PA 19122, USA.
| | | | | |
Collapse
|
13
|
Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N, Hattne J, Ibrahim M, Gul S, Laksmono H, Sierra RG, Gildea RJ, Han G, Hellmich J, Lassalle-Kaiser B, Chatterjee R, Brewster AS, Stan CA, Glöckner C, Lampe A, DiFiore D, Milathianaki D, Fry AR, Seibert MM, Koglin JE, Gallo E, Uhlig J, Sokaras D, Weng TC, Zwart PH, Skinner DE, Bogan MJ, Messerschmidt M, Glatzel P, Williams GJ, Boutet S, Adams PD, Zouni A, Messinger J, Sauter NK, Bergmann U, Yano J, Yachandra VK. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun 2014; 5:4371. [PMID: 25006873 PMCID: PMC4151126 DOI: 10.1038/ncomms5371] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023] Open
Abstract
The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F' state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.
Collapse
Affiliation(s)
- Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Rosalie Tran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Sergey Koroidov
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Sheraz Gul
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hartawan Laksmono
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G. Sierra
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Richard J. Gildea
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guangye Han
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julia Hellmich
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | | | - Ruchira Chatterjee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudiu A. Stan
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Carina Glöckner
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Alyssa Lampe
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dörte DiFiore
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | | | - Alan R. Fry
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M. Marvin Seibert
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jason E. Koglin
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Erik Gallo
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Jens Uhlig
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | | | - Tsu-Chien Weng
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Petrus H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David E. Skinner
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael J. Bogan
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA,PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Pieter Glatzel
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Garth J. Williams
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Johannes Messinger
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Nicholas K. Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| |
Collapse
|
14
|
Gabdulkhakov AG, Dontsova MV. Structural studies on photosystem II of cyanobacteria. BIOCHEMISTRY (MOSCOW) 2014; 78:1524-38. [DOI: 10.1134/s0006297913130105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
15
|
Vaddypally S, Kondaveeti SK, Roudebush JH, Cava RJ, Zdilla MJ. Formation of the tetranuclear, tetrakis-terminal-imido Mn4IV(NtBu)8cubane cluster by four-electron reductive elimination oftBuNNtBu. The role of the s-block ion in stabilization of high-oxidation state intermediates. Chem Commun (Camb) 2014; 50:1061-3. [DOI: 10.1039/c3cc42165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
17
|
Vassiliev S, Zaraiskaya T, Bruce D. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1148-55. [PMID: 23816955 DOI: 10.1016/j.bbabio.2013.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Ave, St. Catharines L2S 3A1, Canada.
| | | | | |
Collapse
|
18
|
Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR. Electrostatic effects on proton coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II. J Phys Chem B 2013; 117:6217-26. [PMID: 23570540 DOI: 10.1021/jp403321b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of electrostatic interactions on the free energy of proton coupled electron transfer in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII) are investigated. The reported study introduces an enhanced multiconformer continuum electrostatics (MCCE) model, parametrized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKa's and oxidation midpoint potentials (E(m)'s) match experimental values for eight complexes, indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKa's of terminal water ligands in [Mn(II/III)(H2O)6](2+/3+) (1), [Mn(III)(P)(H2O)2](3-) (2, P = 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinato), [Mn2(IV,IV)(μ-O)2(terpy)2(H2O)2](4+) (3, terpy = 2,2':6',2″-terpyridine), and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2](4+) (4, phen = 1,10-phenanthroline) and the pKa's of μ-oxo bridges and Mn E(m)'s in [Mn2(μ-O)2(bpy)4] (5, bpy = 2,2'-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn = N,N'-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7), and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8). The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5 ± 0.9 pH units. The model also accounts for changes in the E(m)'s by ligand substituents, such as found in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where proton coupled electron transfer plays a fundamental role in redox-leveling mechanisms.
Collapse
Affiliation(s)
- Muhamed Amin
- Department of Physics, City College of New York, New York, New York 10031, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gatt P, Petrie S, Stranger R, Pace RJ. Rationalizing the 1.9 Å Crystal Structure of Photosystem II-A Remarkable Jahn-Teller Balancing Act Induced by a Single Proton Transfer. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Gatt P, Petrie S, Stranger R, Pace RJ. Rationalizing the 1.9 Å crystal structure of photosystem II--A remarkable Jahn-Teller balancing act induced by a single proton transfer. Angew Chem Int Ed Engl 2012; 51:12025-8. [PMID: 23108989 DOI: 10.1002/anie.201206316] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Phillip Gatt
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
21
|
Vassiliev S, Zaraiskaya T, Bruce D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1671-8. [DOI: 10.1016/j.bbabio.2012.05.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
22
|
Boussac A, Ishida N, Sugiura M, Rappaport F. Probing the role of chloride in Photosystem II from Thermosynechococcus elongatus by exchanging chloride for iodide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:802-10. [DOI: 10.1016/j.bbabio.2012.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
|
23
|
Yamanaka S, Kanda K, Saito T, Umena Y, Kawakami K, Shen JR, Kamiya N, Okumura M, Nakamura H, Yamaguchi K. Electronic and Spin Structures of the CaMn4O5(H2O)4 Cluster in OEC of PSII Refined to 1.9Å X-ray Resolution. ADVANCES IN QUANTUM CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396498-4.00016-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Petrie S, Gatt P, Stranger R, Pace RJ. Modelling the metal atom positions of the Photosystem II water oxidising complex: a density functional theory appraisal of the 1.9 Å resolution crystal structure. Phys Chem Chem Phys 2012; 14:11333-43. [DOI: 10.1039/c2cp41020f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Petrie S, Gatt P, Stranger R, Pace RJ. The interaction of His337 with the Mn4Ca cluster of photosystem II. Phys Chem Chem Phys 2012; 14:4651-7. [DOI: 10.1039/c2cp23935c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Whittaker JW. Non-heme manganese catalase--the 'other' catalase. Arch Biochem Biophys 2011; 525:111-20. [PMID: 22198285 DOI: 10.1016/j.abb.2011.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 12/24/2022]
Abstract
Non-heme manganese catalases are widely distributed over microbial life and represent an environmentally important alternative to heme-containing catalases in antioxidant defense. Manganese catalases contain a binuclear manganese complex as their catalytic active site rather than a heme, and cycle between Mn(2)(II,II) and Mn(2)(III,III) states during turnover. X-ray crystallography has revealed the key structural elements of the binuclear manganese active site complex that can serve as the starting point for computational studies on the protein. Four manganese catalase enzymes have been isolated and characterized, and the enzyme appears to have a broad phylogenetic distribution including both bacteria and archae. More than 100 manganese catalase genes have been annotated in genomic databases, although the assignment of many of these putative manganese catalases needs to be experimentally verified. Iron limitation, exposure to low levels of peroxide stress, thermostability and cyanide resistance may provide the biological and environmental context for the occurrence of manganese catalases.
Collapse
Affiliation(s)
- James W Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
27
|
Grundmeier A, Dau H. Structural models of the manganese complex of photosystem II and mechanistic implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:88-105. [PMID: 21787743 DOI: 10.1016/j.bbabio.2011.07.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
Abstract
Photosynthetic water oxidation and O₂ formation are catalyzed by a Mn₄Ca complex bound to the proteins of photosystem II (PSII). The catalytic site, including the inorganic Mn₄CaO(n)H(x) core and its protein environment, is denoted as oxygen-evolving complex (OEC). Earlier and recent progress in the endeavor to elucidate the structure of the OEC is reviewed, with focus on recent results obtained by (i) X−ray spectroscopy (specifically by EXAFS analyses), and (ii) X-ray diffraction (XRD, protein crystallography). Very recently, an impressive resolution of 1.9Å has been achieved by XRD. Most likely however, all XRD data on the Mn₄CaO(n)H(x) core of the OEC are affected by X-ray induced modifications (radiation damage). Therefore and to address (important) details of the geometric and electronic structure of the OEC, a combined analysis of XRD and XAS data has been approached by several research groups. These efforts are reviewed and extended using an especially comprehensive approach. Taking into account XRD results on the protein environment of the inorganic core of the Mn complex, 12 alternative OEC models are considered and evaluated by quantitative comparison to (i) extended-range EXAFS data, (ii) polarized EXAFS of partially oriented PSII membrane particles, and (iii) polarized EXAFS of PSII crystals. We conclude that there is a class of OEC models that is in good agreement with both the recent crystallographic models and the XAS data. On these grounds, mechanistic implications for the O−O bond formation chemistry are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
28
|
Kawakami K, Umena Y, Kamiya N, Shen JR. Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9Å resolution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:9-18. [PMID: 21543235 DOI: 10.1016/j.jphotobiol.2011.03.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
|
29
|
Najafpour MM. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:111-7. [DOI: 10.1016/j.jphotobiol.2010.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/12/2023]
|
30
|
Ho FM. Structural and mechanistic investigations of photosystem II through computational methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:106-20. [PMID: 21565158 DOI: 10.1016/j.bbabio.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022]
Abstract
The advent of oxygenic photosynthesis through water oxidation by photosystem II (PSII) transformed the planet, ultimately allowing the evolution of aerobic respiration and an explosion of ecological diversity. The importance of this enzyme to life on Earth has ironically been paralleled by the elusiveness of a detailed understanding of its precise catalytic mechanism. Computational investigations have in recent years provided more and more insights into the structural and mechanistic details that underlie the workings of PSII. This review will present an overview of some of these studies, focusing on those that have aimed at elucidating the mechanism of water oxidation at the CaMn₄ cluster in PSII, and those exploring the features of the structure and dynamics of this enzyme that enable it to catalyse this energetically demanding reaction. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Felix M Ho
- Deparment of Photochemistry and Molecular Sciences, Angström Laboratory, Uppsala University, Sweden.
| |
Collapse
|
31
|
Service RJ, Yano J, McConnell I, Hwang HJ, Niks D, Hille R, Wydrzynski T, Burnap RL, Hillier W, Debus RJ. Participation of glutamate-354 of the CP43 polypeptide in the ligation of manganese and the binding of substrate water in photosystem II. Biochemistry 2010; 50:63-81. [PMID: 21114287 DOI: 10.1021/bi1015937] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn(4)Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn(4)Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild type. In addition, the oxygen flash yields exhibited normal period four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant's lower steady-state rate (approximately 20% compared to wild type). Experiments conducted with H(2)(18)O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S(3) state compared to wild type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S(1) state Mn-EXAFS spectrum, a slightly altered S(2) state multiline EPR signal, a substantially altered S(2)-minus-S(1) FTIR difference spectrum, and an unusually long lifetime for the S(2) state (>10 h) in a substantial fraction of reaction centers. In contrast, the S(2) state Mn-EXAFS spectrum was nearly indistinguishable from that of wild type. The S(2)-minus-S(1) FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with (15)N and specific labeling with l-[1-(13)C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the α-COO(-) group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3-4 cm(-1) in both the S(1) and S(2) states. The EPR and FTIR data implied that 76-82% of CP43-E354Q PSII centers can achieve the S(2) state and that most of these can achieve the S(3) state, but no evidence for advancement beyond the S(3) state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn(4)Ca cluster in the S(2) state, the FTIR and H(2)(18)O exchange data show that the mutation strongly influences other properties of the Mn(4)Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S(1) to S(2) transition and weakening the binding of both substrate water molecules (or water-derived ligands), especially the one that exchanges rapidly in the S(3) state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn(4)Ca cluster in the S(1) state as a bridging ligand between two metal ions but provide no compelling evidence that this residue changes its coordination mode during the S(1) to S(2) transition. The H(2)(18)O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S(3) state.
Collapse
Affiliation(s)
- Rachel J Service
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ellis PD, Sears JA, Yang P, Dupuis M, Boron TT, Pecoraro VL, Stich TA, Britt RD, Lipton AS. Solid-state (55)Mn NMR spectroscopy of bis(μ-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II. J Am Chem Soc 2010; 132:16727-9. [PMID: 21058720 DOI: 10.1021/ja1054252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have examined the antiferromagneticly coupled bis(μ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.
Collapse
Affiliation(s)
- Paul D Ellis
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battlelle Boulevard, Richland, Washington 99352, United States, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martínez JI, Yruela I, Picorel R, Alonso PJ. 1H Hyperfine Interactions in the Mn-Cluster of Photosystem II in the S2 State Detected by Hyperfine Sublevel Correlation Spectroscopy. J Phys Chem B 2010; 114:15345-53. [DOI: 10.1021/jp107017f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jesús I. Martínez
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Inmaculada Yruela
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Rafael Picorel
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
34
|
Petrie S, Stranger R, Pace RJ. Hydration Preferences for Mn4Ca Cluster Models of Photosystem II: Location of Potential Substrate-Water Binding Sites. Chemistry 2010; 16:14026-42. [DOI: 10.1002/chem.201001132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Service RJ, Hillier W, Debus RJ. Evidence from FTIR difference spectroscopy of an extensive network of hydrogen bonds near the oxygen-evolving Mn(4)Ca cluster of photosystem II involving D1-Glu65, D2-Glu312, and D1-Glu329. Biochemistry 2010; 49:6655-69. [PMID: 20593803 DOI: 10.1021/bi100730d] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of the refined X-ray crystallographic structures of photosystem II (PSII) at 2.9-3.5 A have revealed the presence of possible channels for the removal of protons from the catalytic Mn(4)Ca cluster during the water-splitting reaction. As an initial attempt to verify these channels experimentally, the presence of a network of hydrogen bonds near the Mn(4)Ca cluster was probed with FTIR difference spectroscopy in a spectral region sensitive to the protonation states of carboxylate residues and, in particular, with a negative band at 1747 cm(-1) that is often observed in the S(2)-minus-S(1) FTIR difference spectrum of PSII from the cyanobacterium Synechocystis sp. PCC 6803. On the basis of its 4 cm(-1) downshift in D(2)O, this band was assigned to the carbonyl stretching vibration (C horizontal lineO) of a protonated carboxylate group whose pK(a) decreases during the S(1) to S(2) transition. The positive charge that forms on the Mn(4)Ca cluster during the S(1) to S(2) transition presumably causes structural perturbations that are transmitted to this carboxylate group via electrostatic interactions and/or an extended network of hydrogen bonds. In an attempt to identify the carboxylate group that gives rise to this band, the FTIR difference spectra of PSII core complexes from the mutants D1-Asp61Ala, D1-Glu65Ala, D1-Glu329Gln, and D2-Glu312Ala were examined. In the X-ray crystallographic models, these are the closest carboxylate residues to the Mn(4)Ca cluster that do not ligate Mn or Ca and all are highly conserved. The 1747 cm(-1) band is present in the S(2)-minus-S(1) FTIR difference spectrum of D1-Asp61Ala but absent from the corresponding spectra of D1-Glu65Ala, D2-Glu312Ala, and D1-Glu329Gln. The band is also sharply diminished in magnitude in the wild type when samples are maintained at a relative humidity of </=85%. It is proposed that D1-Glu65, D2-Glu312, and D1-Glu329 participate in a common network of hydrogen bonds that includes water molecules and the carboxylate group that gives rise to the 1747 cm(-1) band. It is further proposed that the mutation of any of these three residues, or partial dehydration caused by maintaining samples at a relative humidity of <or=85%, disrupts the network sufficiently that the structural perturbations associated with the S(1) to S(2) transition are no longer transmitted to the carboxylate group that gives rise to the 1747 cm(-1) band. Because D1-Glu329 is located approximately 20 A from D1-Glu65 and D2-Glu312, the postulated network of hydrogen bonds must extend for at least 20 A across the lumenal face of the Mn(4)Ca cluster. The D1-Asp61Ala, D1-Glu65Ala, and D2-Glu312Ala mutations also appear to substantially decrease the fraction of PSII reaction centers that undergo the S(3) to S(0) transition in response to a saturating flash. This behavior is consistent with D1-Asp61, D1-Glu65, and D2-Glu312 participating in a dominant proton egress channel that links the Mn(4)Ca cluster with the thylakoid lumen.
Collapse
Affiliation(s)
- Rachel J Service
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
36
|
Milikisiyants S, Chatterjee R, Weyers A, Meenaghan A, Coates C, Lakshmi KV. Ligand Environment of the S2 State of Photosystem II: A Study of the Hyperfine Interactions of the Tetranuclear Manganese Cluster by 2D 14N HYSCORE Spectroscopy. J Phys Chem B 2010; 114:10905-11. [DOI: 10.1021/jp1061623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Amanda Weyers
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ashley Meenaghan
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Christopher Coates
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ′60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
37
|
Vassiliev S, Comte P, Mahboob A, Bruce D. Tracking the flow of water through photosystem II using molecular dynamics and streamline tracing. Biochemistry 2010; 49:1873-81. [PMID: 20121111 DOI: 10.1021/bi901900s] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CaMn(4) cluster of the oxygen-evolving complex (OEC) of photosynthesis catalyzes the light-driven splitting of water into molecular oxygen, protons, and electrons. The OEC is buried within photosystem II (PSII), a multisubunit integral membrane protein complex, and water must find its way to the CaMn(4) cluster by moving through protein. Channels for water entrance, and proton and oxygen exit, have previously been proposed following the analysis of cavities found within X-ray structures of PSII. However, these analyses do not account for the dynamic motion of proteins and cannot track the movement of water within PSII. To study water dynamics in PSII, we performed molecular dynamics simulations and developed a novel approach for the visualization of water diffusion within protein based on a streamline tracing algorithm used in fluid dynamics and diffusion tensor imaging. We identified a system of branching pathways of water diffusion in PSII leading to the OEC that connect to a number of distinct entrance points on the lumenal surface. We observed transient changes in the connections between channels and entrance points that served to moderate both the flow of water near the OEC and the exchange of water inside and outside of the protein. Water flow was significantly altered in simulations lacking the OEC which were characterized by a simpler and wider channel with only two openings, consistent with the creation of an ion channel that allows entry of Mn(2+), Ca(2+), and Cl(-) as required for construction of the CaMn(4) cluster.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| | | | | | | |
Collapse
|
38
|
Li G, Sproviero EM, McNamara WR, Snoeberger RC, Crabtree RH, Brudvig GW, Batista VS. Reversible Visible-Light Photooxidation of an Oxomanganese Water-Oxidation Catalyst Covalently Anchored to TiO2 Nanoparticles. J Phys Chem B 2009; 114:14214-22. [DOI: 10.1021/jp908925z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gonghu Li
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Eduardo M. Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - William R. McNamara
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Robert C. Snoeberger
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
39
|
Orio M, Pantazis DA, Neese F. Density functional theory. PHOTOSYNTHESIS RESEARCH 2009; 102:443-53. [PMID: 19238578 PMCID: PMC2777204 DOI: 10.1007/s11120-009-9404-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 01/12/2009] [Indexed: 05/21/2023]
Abstract
Density functional theory (DFT) finds increasing use in applications related to biological systems. Advancements in methodology and implementations have reached a point where predicted properties of reasonable to high quality can be obtained. Thus, DFT studies can complement experimental investigations, or even venture with some confidence into experimentally unexplored territory. In the present contribution, we provide an overview of the properties that can be calculated with DFT, such as geometries, energies, reaction mechanisms, and spectroscopic properties. A wide range of spectroscopic parameters is nowadays accessible with DFT, including quantities related to infrared and optical spectra, X-ray absorption and Mössbauer, as well as all of the magnetic properties connected with electron paramagnetic resonance spectroscopy except relaxation times. We highlight each of these fields of application with selected examples from the recent literature and comment on the capabilities and limitations of current methods.
Collapse
Affiliation(s)
- Maylis Orio
- Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
40
|
Guthrie MG, Daigle AD, Salazar MR. Properties of a Method for Performing Adaptive, Multilevel QM Simulations of Complex Chemical Reactions in the Gas-Phase. J Chem Theory Comput 2009; 6:18-25. [DOI: 10.1021/ct900449q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Graham Guthrie
- Department of Chemistry, Union University, 1050 Union University Drive, Jackson, Tennessee 38305 and Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755
| | - April D. Daigle
- Department of Chemistry, Union University, 1050 Union University Drive, Jackson, Tennessee 38305 and Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755
| | - Michael R. Salazar
- Department of Chemistry, Union University, 1050 Union University Drive, Jackson, Tennessee 38305 and Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755
| |
Collapse
|
41
|
Shimada Y, Suzuki H, Tsuchiya T, Tomo T, Noguchi T, Mimuro M. Effect of a Single-Amino Acid Substitution of the 43 kDa Chlorophyll Protein on the Oxygen-Evolving Reaction of the Cyanobacterium Synechocystis sp. PCC 6803: Analysis of the Glu354Gln Mutation. Biochemistry 2009; 48:6095-103. [DOI: 10.1021/bi900317a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuichiro Shimada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Suzuki
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Tohru Tsuchiya
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Tomo
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Pantazis DA, Orio M, Petrenko T, Zein S, Lubitz W, Messinger J, Neese F. Structure of the oxygen-evolving complex of photosystem II: information on the S2 state through quantum chemical calculation of its magnetic properties. Phys Chem Chem Phys 2009; 11:6788-98. [DOI: 10.1039/b907038a] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Gunner MR. Computational analysis of photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2008; 97:1-3. [PMID: 18612843 DOI: 10.1007/s11120-008-9316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
The use of various computational techniques for the study of photosynthetic systems is described ranging from genome analysis to density functional simulations of the oxygen evolving complex of PSII. The use of simulations for analyzing protein structures can aid in clarifying ambiguous and incomplete experimental results to identifying underlying rules to create efficient light-initiated charge separation at high efficiency.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, City College of New York, 160 Convent Avenue, New York 10031, USA.
| |
Collapse
|