1
|
Cherepanov DA, Kurashov V, Gostev FE, Shelaev IV, Zabelin AA, Shen G, Mamedov MD, Aybush A, Shkuropatov AY, Nadtochenko VA, Bryant DA, Golbeck JH, Semenov AY. Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149044. [PMID: 38588942 DOI: 10.1016/j.bbabio.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory, 1, 119991 Moscow, Russia
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| |
Collapse
|
2
|
Vasilieva LG, Kaminskaya OP, Yakovlev AG, Shkuropatov AY, Semenov AY, Nadtochenko VA, Krasnovsky AA, Parson WW, Allakhverdiev SI, Govindjee G. In memory of Vladimir Anatolievich Shuvalov (1943-2022): an outstanding biophysicist. PHOTOSYNTHESIS RESEARCH 2022; 154:207-223. [PMID: 36070062 DOI: 10.1007/s11120-022-00932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.
Collapse
Affiliation(s)
- Lyudmila G Vasilieva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Olga P Kaminskaya
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Andrei G Yakovlev
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Anatoliy Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - William W Parson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation.
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 289 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:895-905. [DOI: 10.1016/j.bbabio.2017.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
|
5
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pajusalu M, Rätsep M, Trinkunas G, Freiberg A. Davydov splitting of excitons in cyclic bacteriochlorophyll a nanoaggregates of bacterial light-harvesting complexes between 4.5 and 263 K. Chemphyschem 2011; 12:634-44. [PMID: 21275034 DOI: 10.1002/cphc.201000913] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Indexed: 11/06/2022]
Abstract
The nature of electronic excitations created by photon absorption in the cyclic B850 aggregates of 18 bacteriochlorophyll molecules of LH2 antenna complexes of photosynthetic bacteria is studied over a broad temperature range using absorption, fluorescence, and fluorescence anisotropy spectra. The latter technique has been proved to be suitable for revealing the hidden structure of excitons in inhomogeneously broadened spectra of cyclic aggregates. A theoretical model that accounts for differences of absorbing excitons in undeformed and emitting exciton polarons in deformed antenna lattices is also developed. Only a slight decrease of the exciton bandwidth and exciton coupling energy with temperature is observed. Survival of excitons in the whole temperature span from cryogenic to nearly ambient temperatures strongly suggests that collective, coherent electronic excitations might play a role in the functional light-harvesting process taking place at physiological temperatures.
Collapse
Affiliation(s)
- Mihkel Pajusalu
- Institute of Physics, Tartu University, Riia 142, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
7
|
Khatypov RA, Khmelnitskiy AY, Leonova MM, Vasilieva LG, Shuvalov VA. Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: I. A review. PHOTOSYNTHESIS RESEARCH 2008; 98:81-93. [PMID: 18853274 DOI: 10.1007/s11120-008-9370-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 09/15/2008] [Indexed: 05/26/2023]
Abstract
The purpose of the review is to show that the tetrameric (bacterio)chlorophyll ((B)Chl) structures in reaction centers of photosystem II (PSII) of green plants and in bacterial reaction centers (BRCs) are similar and play a key role in the primary charge separation. The Stark effect measurements on PSII reaction centers have revealed an increased dipole moment for the transition at approximately 730 nm (Frese et al., Biochemistry 42:9205-9213, 2003). It was found (Heber and Shuvalov, Photosynth Res 84:84-91, 2005) that two fluorescent bands at 685 and 720 nm are observed in different organisms. These two forms are registered in the action spectrum of Q(A) photoreduction. Similar results were obtained in core complexes of PSII at low temperature (Hughes et al., Biochim Biophys Acta 1757: 841-851, 2006). In all cases the far-red absorption and emission can be interpreted as indication of the state with charge transfer character in which the chlorophyll monomer plays a role of an electron donor. The role of bacteriochlorophyll monomers (B(A) and B(B)) in BRCs can be revealed by different mutations of axial ligand for Mg central atoms. RCs with substitution of histidine L153 by tyrosine or leucine and of histidine M182 by leucine (double mutant) are not stable in isolated state. They were studied in antennaless membrane by different kinds of spectroscopy including one with femtosecond time resolution. It was found that the single mutation (L153HY) was accompanied by disappearance of B(A) molecule absorption near 802 nm and by 14-fold decrease of photochemical activity measured with ms time resolution. The lifetime of P(870)* increased up to approximately 200 ps in agreement with very low rate of the electron transfer to A-branch. In the double mutant L153HY + M182HL, the B(A) appears to be lost and B(B) is replaced by bacteriopheophytin Phi(B) with the absence of any absorption near 800 nm. Femtosecond measurements have revealed the electron transfer to B-branch with a time constant of approximately 2 ps. These results are discussed in terms of obligatory role of B(A) and Phi(B) molecules located near P for efficient electron transfer from P*.
Collapse
Affiliation(s)
- Ravil A Khatypov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|