1
|
Spijkerman E, Behrend H, Fach B, Gaedke U. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1342-1349. [PMID: 29898541 DOI: 10.1016/j.scitotenv.2018.01.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga.
Collapse
Affiliation(s)
- Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, Potsdam, Germany.
| | - Hella Behrend
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, Potsdam, Germany
| | - Bettina Fach
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, Potsdam, Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, Potsdam, Germany
| |
Collapse
|
2
|
Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 2014; 98:9473-81. [PMID: 25248441 DOI: 10.1007/s00253-014-6088-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
The effects of iron on the growth, lipid accumulation, and gene expression profiles of the limnetic Chlorella sorokiniana CCTCC M209220 under photoautotrophy were investigated. The addition of iron up to 10(-5) mol l(-l) increased final cell densities by nearly 2-fold at 2.3 × 10(7) cells/ml, growth rate by 2-fold, and the length of the exponential phase by 5 days as compared to unsupplemented controls while 10(-3) mol l(-1) iron was toxic. The lipid content increased from 12 % for unsupplemented cultures to 33 % at 10(-4) mol l(-1) iron while the highest overall lipid yield reached 179 mg l(-1). A genefishing and qPCR comparison between the C. sorokiniana at low and high iron levels indicated increases in the expression of several genes, including carbonic anhydrase involved in microalgal cell growth, as well as acc1 and choline transporter related to lipid synthesis. This study provides insights into changes in gene expression and metabolism that accompany iron supplementation to Chlorella as well as potential metabolic engineering targets for improving growth and lipid synthesis in microalgae.
Collapse
Affiliation(s)
- Minxi Wan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Spijkerman E, Stojkovic S, Beardall J. CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. PHOTOSYNTHESIS RESEARCH 2014; 121:213-221. [PMID: 24906887 DOI: 10.1007/s11120-014-0016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3-3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CAext) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CAext activity and expressed a protein cross-reacting with CAH1 (the CAext from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CAext activity and high affinity CO2 utilization were the highest under low CO2 conditions. C. acidophila accumulated Ci and expressed the CAH1 protein under all conditions tested, and C. reinhardtii also contained substantial amounts of CAH1 protein under Pi-limitation. In conclusion, Ci utilization is optimized in C. acidophila under ecologically relevant conditions, which may enable optimal survival in its extreme Ci- and Pi-limited habitat. The exact physiological and biochemical acclimation remains to be further studied.
Collapse
Affiliation(s)
- Elly Spijkerman
- Universität Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany,
| | | | | |
Collapse
|
4
|
Mettler T, Mühlhaus T, Hemme D, Schöttler MA, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV, Sommer F, Vosloh D, Seiwert B, Erban A, Burgos A, Arvidsson S, Schönfelder S, Arnold A, Günther M, Krause U, Lohse M, Kopka J, Nikoloski Z, Mueller-Roeber B, Willmitzer L, Bock R, Schroda M, Stitt M. Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:2310-2350. [PMID: 24894045 PMCID: PMC4114937 DOI: 10.1105/tpc.114.124537] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 05/18/2023]
Abstract
We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.
Collapse
Affiliation(s)
- Tabea Mettler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dorothea Hemme
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Jens Rupprecht
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Adam Idoine
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sunil Kumar Pal
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Flavia Vischi Winck
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Vosloh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bettina Seiwert
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Samuel Arvidsson
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | - Anne Arnold
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Isensee K, Erez J, Stoll HM. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. PHYSIOLOGIA PLANTARUM 2014; 150:321-338. [PMID: 23992373 DOI: 10.1111/ppl.12096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol l(-1) CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol l(-1) . Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.
Collapse
Affiliation(s)
- Kirsten Isensee
- Departmento de Geologia, Universidad Oviedo, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
6
|
Vischi Winck F, Arvidsson S, Riaño-Pachón DM, Hempel S, Koseska A, Nikoloski Z, Urbina Gomez DA, Rupprecht J, Mueller-Roeber B. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation. PLoS One 2013; 8:e79909. [PMID: 24224019 PMCID: PMC3816576 DOI: 10.1371/journal.pone.0079909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Samuel Arvidsson
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Sabrina Hempel
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Aneta Koseska
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - David Alejandro Urbina Gomez
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Jens Rupprecht
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
7
|
Raven JA. The evolution of autotrophy in relation to phosphorus requirement. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4023-46. [PMID: 24123454 DOI: 10.1093/jxb/ert306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of autotrophy is considered in relation to the availability of phosphorus (P), the ultimate elemental resource limiting biological productivity through Earth's history. Work on microbes and plants is emphasized, dealing in turn with the main uses for P in cells, namely nucleic acids, phospholipids, and water-soluble low molecular mass phosphate esters plus metabolically active inorganic orthophosphate. There is a greater minimum gene number and minimum DNA content in autotrophic than in osmochemoorganotrophic archaea and bacteria, as well as a lower rate of biomass increase per unit P (P-use efficiency) in autotrophs than in osmochemoorganotrophs, in eukaryotes as well as bacteria. This may be due to the diversion of rRNA from producing proteins common to all organisms to producing highly expressed proteins specific to autotrophs. The P requirement for phospholipids is decreased in oxygenic photolithotrophs, and some anoxygenic photolithotrophs, by substituting galactolipids and sulpholipids for phospholipids in the photosynthetic, and some other, membranes. The six different autotrophic inorganic carbon assimilation pathways have varying requirements for low molecular mass water-soluble phosphate esters. In oxygenic photolithotrophs, there is no clear evidence of a different P requirement for growth in the absence (diffusive CO2 entry) relative to the presence of CO2-concentrating mechanisms (CCMs). P limitation increases the expression of crassulacean acid metabolism (CAM) in facultative CAM plants, decreases the extent of inorganic carbon accumulation in algae with CCMs, and (usually) their inorganic carbon affinity and the water-use efficiency of growth of terrestrial plants, and the light-use efficiency of photolithotrophs.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
8
|
Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A. A newly isolatedChlorellasp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 2013; 86:373-80. [DOI: 10.1111/1574-6941.12162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Haim Treves
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Omri M. Finkel
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Simon M. Berkowicz
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Yoram Shotland
- Chemical Engineering; Shamoon College of Engineering; Beer Sheva Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
9
|
|
10
|
Xu J, Gao K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. PLANT PHYSIOLOGY 2012; 160:1762-9. [PMID: 23129205 PMCID: PMC3510108 DOI: 10.1104/pp.112.206961] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
11
|
Raven JA, Giordano M, Beardall J, Maberly SC. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B Biol Sci 2012; 367:493-507. [PMID: 22232762 PMCID: PMC3248706 DOI: 10.1098/rstb.2011.0212] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)-photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO(2) assimilation. The high CO(2) and (initially) O(2)-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO(2) decreased and O(2) increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO(2) affinity and CO(2)/O(2) selectivity correlated with decreased CO(2)-saturated catalytic capacity and/or for CO(2)-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco-PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO(2) episode followed by one or more lengthy high-CO(2) episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO(2) ocean. More investigations, including studies of genetic adaptation, are needed.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, The James Hutton Institute, University of Dundee at TJHI, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | |
Collapse
|
12
|
Spijkerman E, de Castro F, Gaedke U. Independent colimitation for carbon dioxide and inorganic phosphorus. PLoS One 2011; 6:e28219. [PMID: 22145031 PMCID: PMC3228739 DOI: 10.1371/journal.pone.0028219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/03/2011] [Indexed: 11/19/2022] Open
Abstract
Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2) and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2) and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation.We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2) and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants.
Collapse
Affiliation(s)
- Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Potsdam, Germany.
| | | | | |
Collapse
|
13
|
Matsuda Y. Inorganic carbon utilization by aquatic photoautotrophs and potential usages of algal primary production. PHOTOSYNTHESIS RESEARCH 2011; 109:1-5. [PMID: 21909712 DOI: 10.1007/s11120-011-9683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
|