1
|
Laisk A, Peterson RB, Oja V. Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. PHOTOSYNTHESIS RESEARCH 2024; 160:31-44. [PMID: 38502255 DOI: 10.1007/s11120-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Accumulation of carotenoid (Car) triplet states was investigated by singlet-triplet annihilation, measured as chlorophyll (Chl) fluorescence quenching in sunflower and lettuce leaves. The leaves were illuminated by Xe flashes of 4 μs length at half-height and 525-565 or 410-490 nm spectral band, maximum intensity 2 mol quanta m-2 s-1, flash photon dose up to 10 μmol m-2 or 4-10 PSII excitations. Superimposed upon the non-photochemically unquenched Fmd state, fluorescence was strongly quenched near the flash maximum (minimum yield Fe), but returned to the Fmd level after 30-50 μs. The fraction of PSII containing a 3Car in equilibrium with singlet excitation was calculated as Te = (Fmd-Fe)/Fmd. Light dependence of Te was a rectangular hyperbola, whose initial slope and plateau were determined by the quantum yields of triplet formation and annihilation and by the triplet lifetime. The intrinsic lifetime was 9 μs, but it was strongly shortened by the presence of O2. The triplet yield was 0.66 without nonphotochemical quenching (NPQ) but approached zero when NP-Quenched fluorescence approached 0.2 Fmd. The results show that in the Fmd state a light-adapted charge-separated PSIIL state is formed (Sipka et al., The Plant Cell 33:1286-1302, 2021) in which Pheo-P680+ radical pair formation is hindered, and excitation is terminated in the antenna by 3Car formation. The results confirm that there is no excitonic connectivity between PSII units. In the PSIIL state each PSII is individually turned into the NPQ state, where excess excitation is quenched in the antenna without 3Car formation.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia.
| | - Richard B Peterson
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Laisk A. Prying into the green black-box. PHOTOSYNTHESIS RESEARCH 2022; 154:89-112. [PMID: 36114436 DOI: 10.1007/s11120-022-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Life-long efforts of the Tartu photosynthesis research group have been summarized. The measurements were facilitated by self-designed instruments, distinct in multifunctionality and fastresponse time. The black-box type kinetical analysis on intact leaves has revealed several physiologically significant features of leaf photosynthesis. Rubisco studies reflected competition for the active site between the substrates and products, linearizing in vivo kinetics compared with the low-Km in vitro responses. Rubisco Activase usually activates only a small part of the Rubisco, making the rest of it a storage protein. Precisely quantifying absorbed photons and the responding transmittance changes, electron flow rates through cytochrome b6f, plastocyanin and photosystem I were measured, revealing competition between the proton-uncoupled cyclic electron flow from PSI to Cyt b6f to P700+ and the proton-coupled linear flow from PSII to Cyt b6f to P700+. Analyzing responses of O2 evolution and Chl fluorescence to ms-length light pulses we concluded that explanation of the sigmoidal fluorescence induction by excitonic connectivity between PSII units is a misconception. Each PSII processes excitation from its own antenna, but the sigmoidicity is caused by rise of the fluorescence yield of the QA-reduced PSII units after their QB site becomes occupied by reduced plastoquinone (or diuron). Unlike respiration, photosynthetic electrons must prepare their acceptor by coupled synthesis of 3ATP/4e-. Feedback regulation of this ratio leads to oscillations under saturating light and CO2, when the rate is Pi-limited. The slow oscillations (period 60s) indicate that the magnitudes of the deflections in the 3ATP/4e- ratio, corrected by regulating cyclic and alternative electron flow (including the Mehler type O2 reduction), are only a fraction of a per cent. The Pi limitation causes slip in the ATP synthase, slightly increasing the basic 12H+/3ATP requirement.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, W. Ostwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
3
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
4
|
Laisk A, Oja V. Variable fluorescence of closed photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2020; 143:335-346. [PMID: 31960223 DOI: 10.1007/s11120-020-00712-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 05/12/2023]
Abstract
Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| |
Collapse
|
5
|
Laisk A, Oja V. Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. PHOTOSYNTHESIS RESEARCH 2018; 136:63-82. [PMID: 28936722 DOI: 10.1007/s11120-017-0439-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 05/28/2023]
Abstract
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA- to QB be slower than that from QA- to QB-. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia
| |
Collapse
|
6
|
Miyata K, Ikeda H, Nakaji M, Kanel DR, Terashima I. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments. PLANT & CELL PHYSIOLOGY 2015; 56:1841-1854. [PMID: 26203120 DOI: 10.1093/pcp/pcv107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/14/2015] [Indexed: 05/24/2023]
Abstract
The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels.
Collapse
Affiliation(s)
- Kazunori Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hiroshi Ikeda
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masayoshi Nakaji
- Makino Herbarium, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397 Japan
| | - Dhana Raj Kanel
- National Herbarium and Plant Laboratories, Department of Plant Resources, Godawari, Nepal
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
7
|
Laisk A, Eichelmann H, Oja V. Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:565-75. [PMID: 25800682 DOI: 10.1016/j.bbabio.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
In sunflower leaves linear electron flow LEF=4O2 evolution rate was measured at 20 ppm O2 in N2. PSII charge separation rate CSRII=aII∙PAD∙(Fm-F)/Fm, where aII is excitation partitioning to PSII, PAD is photon absorption density, Fm and F are maximum and actual fluorescence yields. Under 630 nm LED+720 nm far-red light (FRL), LEF was equal to CSRII with aII=0.51 to 0.58. After FRL was turned off, plastoquinol (PQH2) accumulated, but LEF decreased more than accountable by F increase, indicating PQH2-oxidizing cyclic electron flow in PSII (CEFII). CEFII was faster under conditions requiring more ATP, consistent with CEFII being coupled with proton translocation. We propose that PQH2 bound to the QC site is oxidized, one e- moving to P680+, the other e- to Cyt b559. From Cyt b559 the e- reduces QB- at the QB site, forming PQH2. About 10-15% electrons may cycle, causing misses in the period-4 flash O2 evolution and lower quantum yield of photosynthesis under stress. We also measured concentration dependence of PQH2 oxidation by dioxygen, as indicated by post-illumination decrease of Chl fluorescence yield. After light was turned off, F rapidly decreased from Fm to 0.2 Fv, but further decrease to F0 was slow and O2 concentration dependent. The rate constant of PQH2 oxidation, determined from this slow phase, was 0.054 s(-1) at 270 μM (21%) O2, decreasing with Km(O2) of 60 μM (4.6%) O2. This eliminates the interference of O2 in the measurements of CEFII.
Collapse
Affiliation(s)
- Agu Laisk
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia.
| | - Hillar Eichelmann
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia
| | - Vello Oja
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia
| |
Collapse
|
8
|
Laisk A, Oja V, Eichelmann H, Dall'Osto L. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:315-25. [PMID: 24333386 DOI: 10.1016/j.bbabio.2013.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.
Collapse
Affiliation(s)
- Agu Laisk
- Tartu Ülikooli Molekulaar- ja Rakubioloogia Instituut, Riia tn. 23, Tartu 51010, Estonia.
| | - Vello Oja
- Tartu Ülikooli Molekulaar- ja Rakubioloogia Instituut, Riia tn. 23, Tartu 51010, Estonia
| | - Hillar Eichelmann
- Tartu Ülikooli Molekulaar- ja Rakubioloogia Instituut, Riia tn. 23, Tartu 51010, Estonia
| | - Luca Dall'Osto
- Università di Verona, Dipartimento di Biotecnologie, Strada Le Grazie, 15 37135 Verona, Italy
| |
Collapse
|
9
|
Laisk A, Oja V. Thermal phase and excitonic connectivity in fluorescence induction. PHOTOSYNTHESIS RESEARCH 2013; 117:431-448. [PMID: 24005848 DOI: 10.1007/s11120-013-9915-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/19/2013] [Indexed: 05/28/2023]
Abstract
Chl fluorescence induction (FI) was recorded in sunflower leaves pre-adapted to darkness or low preferentially PSI light, or inhibited by DCMU. For analysis the FI curves were plotted against the cumulative number of excitations quenched by PSII, n q, calculated as the cumulative complementary area above the FI curve. In the +DCMU leaves n q was <1 per PSII, suggesting pre-reduction of Q A during the dark pre-exposure. A strongly sigmoidal FI curve was constructed by complementing (shifting) the recorded FI curves to n q = 1 excitation per PSII. The full FI curve in +DCMU leaves was well fitted by a model assuming PSII antennae are excitonically connected in domains of four PSII. This result, obtained by gradually reducing Q A in PSII with pre-blocked Q B (by DCMU or PQH2), differs from that obtained by gradually blocking the Q B site (by increasing DCMU or PQH2 level) in leaves during (quasi)steady-state e(-) transport (Oja and Laisk, Photosynth Res 114, 15-28, 2012). Explanations are discussed. Donor side quenching was characterized by comparison of the total n q in one and the same dark-adapted leaf, which apparently increased with increasing PFD during FI. An explanation for the donor side quenching is proposed, based on electron transfer from excited P680* to oxidized tyrosine Z (TyrZ(ox)). At high PFDs the donor side quenching at the J inflection of FI is due mainly to photochemical quenching by TyrZ(ox). This quenching remains active for subsequent photons while TyrZ remains oxidized, following charge transfer to Q A. During further induction this quenching disappears as soon as PQ and Q A become reduced, charge separation becomes impossible and TyrZ is reduced by the water oxidizing complex.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,
| | | |
Collapse
|
10
|
Stirbet A. Excitonic connectivity between photosystem II units: what is it, and how to measure it? PHOTOSYNTHESIS RESEARCH 2013; 116:189-214. [PMID: 23794168 DOI: 10.1007/s11120-013-9863-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/26/2013] [Indexed: 05/22/2023]
Abstract
In photosynthetic organisms, light energy is absorbed by a complex network of chromophores embedded in light-harvesting antenna complexes. In photosystem II (PSII), the excitation energy from the antenna is transferred very efficiently to an active reaction center (RC) (i.e., with oxidized primary quinone acceptor Q(A)), where the photochemistry begins, leading to O2 evolution, and reduction of plastoquinones. A very small part of the excitation energy is dissipated as fluorescence and heat. Measurements on chlorophyll (Chl) fluorescence and oxygen have shown that a nonlinear (hyperbolic) relationship exists between the fluorescence yield (Φ(F)) (or the oxygen emission yield, (Φ(O2)) and the fraction of closed PSII RCs (i.e., with reduced Q(A)). This nonlinearity is assumed to be related to the transfer of the excitation energy from a closed PSII RC to an open (active) PSII RC, a process called PSII excitonic connectivity by Joliot and Joliot (CR Acad Sci Paris 258: 4622-4625, 1964). Different theoretical approaches of the PSII excitonic connectivity, and experimental methods used to measure it, are discussed in this review. In addition, we present alternative explanations of the observed sigmoidicity of the fluorescence induction and oxygen evolution curves.
Collapse
|
11
|
Schreiber U, Klughammer C. Wavelength-dependent photodamage to Chlorella investigated with a new type of multi-color PAM chlorophyll fluorometer. PHOTOSYNTHESIS RESEARCH 2013; 114:165-177. [PMID: 23408255 DOI: 10.1007/s11120-013-9801-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/04/2013] [Indexed: 05/28/2023]
Abstract
A new type of multi-color PAM chlorophyll fluorometer (Schreiber et al. 2012) was applied for measurements of photodamage to photosystem II (PS II) in optically thin suspensions of Chlorella (200 μg Chl l(-1)) in the presence of 1 mM lincomycin. An action spectrum of the relative decrease of F(v)/F(m) in the 440-625 nm range was measured, which not only showed the expected high activity in the blue, but at a lower level also substantial activity above 540 nm. With the same dilute suspension, a PS II absorption spectrum was derived via measurements of the O-I(1) rise kinetics induced by differently colored strong light at defined incident quantum flux densities. After normalization of the two spectra at 625 nm, the relative extent of photodamage at 440-480 nm proved substantially higher than absorption by PS II, whereas the two spectra were close to identical in the 540-625 nm range. Hence, overall photodamage to PS II appears to consist of two components, one of which is due to light absorbed by PS II pigments, whereas the other one is likely to involve direct light absorption by Mn in the oxygen-evolving complex (Hakala et al. Biochim Biophys Acta 1706:68-80, 2005). Based on this rationale, an action spectrum of the Mn mechanism of photodamage was deconvoluted from the overall action spectrum, declining steeply above 480 nm. An almost identical Mn-spectrum was derived by another approach with the PAR of the various colors being adjusted to give identical rates of PS II turnover, PAR (II). The tentative, basic assumption of negligibly small contribution of the Mn mechanism to photodamage above 540 nm was supported by supplementary measurements using an external 665 nm lamp. 665 nm not only gave about two times PS II turnover as compared to 625 nm, but also about two times photodamage.
Collapse
Affiliation(s)
- Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | | |
Collapse
|
12
|
Oja V, Laisk A. Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves. PHOTOSYNTHESIS RESEARCH 2012; 114:15-28. [PMID: 22890327 DOI: 10.1007/s11120-012-9775-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
Oxygen evolution was measured in sunflower leaves in steady-state and during multiple-turnover pulses (MTP) of different light (630 nm LED plus far-red light) intensity and duration. In parallel, Chl fluorescence yields F(0) (minimum), F(s) (steady-state), and F(m) (pulse-saturated), as well as fluorescence induction during MTPs were recorded. Extra O(2) evolution was measured in response to a saturating single-turnover Xe flash (STF) applied immediately subsequently to the actinic light in the steady-state and to each MTP. Under the used anaerobic conditions and randomized S-states electron transport per STF was calculated as 4O(2) evolution. The STF-induced electron transport (=the number of open PSII) was maximal at the low background light, but decreased with progressing light saturation in steady-state and with the increasing duration of MTP. The quantum yield (effective antenna size) of open PSII centers remained constant when adjacent centers became closed. The photochemical quenching of fluorescence q(P) = (F(m) - F(s))/(F(m) - F(0)) was proportional with the portion of open PSII centers in the steady-state (variable non-photochemical quenching, NPQ) and with increasing MTP duration (NPQ absent). Comparison of experimental responses to a model based on PSII dimers with well-connected antennae showed no energetic connectivity between PSII antennae in intact leaves, suggesting that in vivo PSII exist as monomers, or dimers with energetically disconnected antennae.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Molecular and Cell Biology, University of Tartu, Riia St 23, 51010 Tartu, Estonia
| | | |
Collapse
|