1
|
Lyratzakis A, Daskalakis V, Xie H, Tsiotis G. The synergy between the PscC subunits for electron transfer to the P 840 special pair in Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2024; 160:87-96. [PMID: 38625595 PMCID: PMC11108878 DOI: 10.1007/s11120-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P840+ is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein-protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P840 located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.
Collapse
Affiliation(s)
- Alexandros Lyratzakis
- Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, 70013, Greece
| | - Vangelis Daskalakis
- Department of Chemical Engineering, School of Engineering, University of Patras, Rion, Patras, 26504, Greece
| | - Hao Xie
- Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Georgios Tsiotis
- Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, 70013, Greece.
| |
Collapse
|
2
|
Kishimoto H, Azai C, Yamamoto T, Mutoh R, Nakaniwa T, Tanaka H, Miyanoiri Y, Kurisu G, Oh-oka H. Soluble domains of cytochrome c-556 and Rieske iron-sulfur protein from Chlorobaculum tepidum: Crystal structures and interaction analysis. Curr Res Struct Biol 2023; 5:100101. [PMID: 37180033 PMCID: PMC10172866 DOI: 10.1016/j.crstbi.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical β-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.
Collapse
Affiliation(s)
- Hiraku Kishimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Chihiro Azai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoya Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Corresponding author. Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Kalinowska B, Banach M, Wiśniowski Z, Konieczny L, Roterman I. Is the hydrophobic core a universal structural element in proteins? J Mol Model 2017. [PMID: 28623601 PMCID: PMC5487895 DOI: 10.1007/s00894-017-3367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hydrophobic core, when subjected to analysis based on the fuzzy oil drop model, appears to be a universal structural component of proteins irrespective of their secondary, supersecondary, and tertiary conformations. A study has been performed on a set of nonhomologous proteins representing a variety of CATH categories. The presence of a well-ordered hydrophobic core has been confirmed in each case, regardless of the protein’s biological function, chain length or source organism. In light of fuzzy oil drop (FOD) analysis, various supersecondary forms seem to share a common structural factor in the form of a hydrophobic core, emerging either as part of the whole protein or a specific domain. The variable status of individual folds with respect to the FOD model reflects their propensity for conformational changes, frequently associated with biological function. Such flexibility is expressed as variable stability of the hydrophobic core, along with specific encoding of potential conformational changes which depend on the properties of helices and β-folds.
Collapse
Affiliation(s)
- Barbara Kalinowska
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530, Krakow, Poland.,Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Krakow, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530, Krakow, Poland.,Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Krakow, Poland
| | - Zdzisław Wiśniowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530, Krakow, Poland.
| |
Collapse
|
4
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Kimura Y, Kasuga S, Unno M, Furusawa T, Osoegawa S, Sasaki Y, Ohno T, Wang-Otomo ZY. The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c' from the thermophilic purple sulfur bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2015; 124:19-29. [PMID: 25519852 DOI: 10.1007/s11120-014-0069-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
A soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy. In the oxidized forms, D131K and D131G mutants exhibited denaturing temperatures significantly lower than that of the recombinant control Cyt c'. In contrast, R129K and R129A mutants denatured at nearly identical temperatures with the control Cyt c', indicating that the C-terminal D131 is an important residue maintaining the enhanced thermal stability of Tch. tepidum Cyt c'. The control Cyt c' and all of the mutants increased their thermal stability upon the reduction. Interestingly, D131K exhibited narrow DSC curves and unusual thermodynamic parameters in both redox states. The RR spectra of the control Cyt c' exhibited characteristic bands at 1,635 and 1,625 cm(-1), ascribed to intermediate spin (IS) and high spin (HS) states, respectively. The IS/HS distribution was differently affected by the D131 and R129 mutations and pH changes. Furthermore, R129 mutants suggested the lowering of their redox potentials. These results strongly indicate that the D131 and R129 residues play significant roles in maintaining the thermal stability and modulating the local heme environment of Tch. tepidum Cyt c'.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan,
| | | | | | | | | | | | | | | |
Collapse
|