1
|
Goss R, Volke D, Werner LE, Kunz R, Kansy M, Hoffmann R, Wilhelm C. Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase. IUBMB Life 2023; 75:66-76. [PMID: 35557488 DOI: 10.1002/iub.2650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | | | - Ronja Kunz
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Marcel Kansy
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
2
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
3
|
Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int J Mol Sci 2021; 22:ijms22062969. [PMID: 33804002 PMCID: PMC8000295 DOI: 10.3390/ijms22062969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
Collapse
|
4
|
Kansy M, Volke D, Sturm L, Wilhelm C, Hoffmann R, Goss R. Pre-purification of diatom pigment protein complexes provides insight into the heterogeneity of FCP complexes. BMC PLANT BIOLOGY 2020; 20:456. [PMID: 33023504 PMCID: PMC7539453 DOI: 10.1186/s12870-020-02668-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/02/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.
Collapse
Affiliation(s)
- Marcel Kansy
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Daniela Volke
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Line Sturm
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, Leipzig University, Permoserstraße 15, 04318, Leipzig, Germany
| | - Ralf Hoffmann
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Goss R, Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:455. [PMID: 32425962 PMCID: PMC7212465 DOI: 10.3389/fpls.2020.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Collapse
Affiliation(s)
- Reimund Goss
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Nagao R, Yokono M, Ueno Y, Shen JR, Akimoto S. pH-Sensing Machinery of Excitation Energy Transfer in Diatom PSI-FCPI Complexes. J Phys Chem Lett 2019; 10:3531-3535. [PMID: 31192608 DOI: 10.1021/acs.jpclett.9b01314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/28/2023]
Abstract
Excitation energy-transfer processes in photosynthetic light-harvesting complexes are strongly affected by the surrounding environments of pigments. Here we report on the effects of pH changes on excitation energy dynamics in both diatom photosystem I-fucoxanthin chlorophyll a/ c-binding protein (PSI-FCPI) and PSI core complexes by means of fluorescence spectroscopies. The steady-state fluorescence spectra of the PSI-FCPI showed similar features among three samples at pH 5.0, 6.5, and 8.0. However, fluorescence decay-associated spectra of the pH 5.0- and 8.0-adapted PSI-FCPI within 100 ps exhibit peak shifts to longer and shorter wavelengths, respectively, than the peaks in the pH 6.5 spectra. Because such spectral changes hardly occur in the PSI complexes, the peak shifts at pH 5.0 and 8.0 in the PSI-FCPI can be ascribed to alterations of pigment-pigment and/or pigment-protein interactions around/within FCPI caused by the pH changes. These findings provide novel physical insights into the pH-sensing light-harvesting strategy in diatom PSI-FCPI.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , Okayama 700-8530 , Japan
| | - Makio Yokono
- Innovation Center , Nippon Flour Mills Co., Ltd. , Atsugi 243-0041 , Japan
| | - Yoshifumi Ueno
- Graduate School of Science , Kobe University , Kobe 657-8501 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , Okayama 700-8530 , Japan
| | - Seiji Akimoto
- Graduate School of Science , Kobe University , Kobe 657-8501 , Japan
| |
Collapse
|
7
|
Büchel C. Light harvesting complexes in chlorophyll c-containing algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148027. [PMID: 31153887 DOI: 10.1016/j.bbabio.2019.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
Besides the so-called 'green lineage' of eukaryotic photosynthetic organisms that include vascular plants, a huge variety of different algal groups exist that also harvest light by means of membrane intrinsic light harvesting proteins (Lhc). The main taxa of these algae are the Cryptophytes, Haptophytes, Dinophytes, Chromeridae and the Heterokonts, the latter including diatoms, brown algae, Xanthophyceae and Eustigmatophyceae amongst others. Despite the similarity in Lhc proteins between vascular plants and these algae, pigmentation is significantly different since no Chl b is bound, but often replaced by Chl c, and a large diversity in carotenoids functioning in light harvesting and/or photoprotection is present. Due to the presence of Chl c in most of the taxa the name 'Chl c-containing organisms' has become common, however, Chl b-less is more precise since some harbour Lhc proteins that only bind one type of Chl, Chl a. In recent years huge progress has been made about the occurrence and function of Lhc in diatoms, so-called fucoxanthin chlorophyll proteins (FCP), where also the first molecular structure became available recently. In addition, especially energy transfer amongst the unusual pigments bound was intensively studied in many of these groups. This review summarises the present knowledge about the molecular structure, the arrangement of the different Lhc in complexes, the excitation energy transfer abilities and the involvement in photoprotection of the different Lhc systems in the so-called Chl c-containing organisms. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A. The PSI-PSII Megacomplex in Green Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1098-1108. [PMID: 30753722 DOI: 10.1093/pcp/pcz026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/23/2018] [Accepted: 02/04/2019] [Indexed: 05/27/2023]
Abstract
Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.
Collapse
Affiliation(s)
- Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akio Murakami
- Kobe University Research Centre for Inland Seas, Awaji, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| |
Collapse
|
9
|
Jäger S, Büchel C. Cation-dependent changes in the thylakoid membrane appression of the diatom Thalassiosira pseudonana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:41-51. [PMID: 30447184 DOI: 10.1016/j.bbabio.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/08/2018] [Revised: 09/21/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
Diatoms show a special organisation of their plastid membranes, such that their thylakoids span the entire plastid in bands of three. While in higher plants the interaction of the light harvesting complex II and photosystem II with divalent cations (especially Mg2+) was found to take part in the interplay of electrostatic attraction and repulsion in grana membrane appression, for diatoms the key players in maintaining proper membrane distances were not identified so far. In this work, we investigated the changes in the thylakoid architecture of Thalassiosira pseudonana in reaction to different salts by using circular dichroism and fluorescence spectroscopy in combination with other techniques. We show that divalent cations have an important influence on optimal pigment organisation and thus also on maintaining membrane appression. Thereby, monovalent cations are far less effective. The concentration needed is in a physiological range and fits well with the values obtained for higher plant grana stacking, despite the fact that strict protein segregation as seen in higher plant grana is missing.
Collapse
Affiliation(s)
- Stefanie Jäger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
10
|
Kansy M, Gurowietz A, Wilhelm C, Goss R. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. BMC PLANT BIOLOGY 2017; 17:221. [PMID: 29178846 PMCID: PMC5702237 DOI: 10.1186/s12870-017-1154-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/16/2017] [Accepted: 11/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The preparation of functional thylakoid membranes from diatoms with a silica cell wall is still a largely unsolved challenge. Therefore, an optimized protocol for the isolation of oxygen evolving thylakoid membranes of the centric diatom Cyclotella meneghiniana has been developed. The buffer used for the disruption of the cells was supplemented with polyethylene glycol based on its stabilizing effect on plastidic membranes. Disruption of the silica cell walls was performed in a French Pressure cell and subsequent linear sorbitol density gradient centrifugation was used to isolate the thylakoid membrane fraction. RESULTS Spectroscopic characterization of the thylakoids by absorption and 77 K fluorescence spectroscopy showed that the photosynthetic pigment protein complexes in the isolated thylakoid membranes were intact. This was supported by oxygen evolution measurements which demonstrated high electron transport rates in the presence of the artificial electron acceptor DCQB. High photosynthetic activity of photosystem II was corroborated by the results of fast fluorescence induction measurements. In addition to PSII and linear electron transport, indications for a chlororespiratory electron transport were observed in the isolated thylakoid membranes. Photosynthetic electron transport also resulted in the establishment of a proton gradient as evidenced by the quenching of 9-amino-acridine fluorescence. Because of their ability to build-up a light-driven proton gradient, de-epoxidation of diadinoxanthin to diatoxanthin and diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence could be observed for the first time in isolated thylakoid membranes of diatoms. However, the ∆pH, diadinoxanthin de-epoxidation and diatoxanthin-dependent NPQ were weak compared to intact diatom cells or isolated thylakoids of higher plants. CONCLUSIONS The present protocol resulted in thylakoids with a high electron transport capacity. These thylakoids can thus be used for experiments addressing various aspects of the photosynthetic electron transport by, e.g., employing artificial electron donors and acceptors which do not penetrate the diatom cell wall. In addition, the present isolation protocol yields diatom thylakoids with the potential for xanthophyll cycle and non-photochemical quenching measurements. However, the preparation has to be further refined before these important topics can be addressed systematically.
Collapse
Affiliation(s)
- Marcel Kansy
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Alexandra Gurowietz
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Christian Wilhelm
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Reimund Goss
- Department of Plant Physiology, Institute of Biology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| |
Collapse
|
11
|
Schaller-Laudel S, Latowski D, Jemioła-Rzemińska M, Strzałka K, Daum S, Bacia K, Wilhelm C, Goss R. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata. PHYSIOLOGIA PLANTARUM 2017; 160:339-358. [PMID: 28317130 DOI: 10.1111/ppl.12565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 05/25/2023]
Abstract
The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation.
Collapse
Affiliation(s)
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Sebastian Daum
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle, D-06120, Germany
| | - Kirsten Bacia
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle, D-06120, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Leipzig, D-04103, Germany
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Leipzig, D-04103, Germany
| |
Collapse
|
12
|
Goss R, Greifenhagen A, Bergner J, Volke D, Hoffmann R, Wilhelm C, Schaller-Laudel S. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants. PLANTA 2017; 245:793-806. [PMID: 28025675 DOI: 10.1007/s00425-016-2645-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Anne Greifenhagen
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Juliane Bergner
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Daniela Volke
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Ralf Hoffmann
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Susann Schaller-Laudel
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Kaňa R, Govindjee. Role of Ions in the Regulation of Light-Harvesting. FRONTIERS IN PLANT SCIENCE 2016; 7:1849. [PMID: 28018387 PMCID: PMC5160696 DOI: 10.3389/fpls.2016.01849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 03/03/2024]
Abstract
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the CzechiaTřeboň, Czechia
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South BohemiaČeské Budějovice, Czechia
| | - Govindjee
- Center of Biophysics and Quantitative Biology, Department of Biochemistry, Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
14
|
Shan Y, Liu Y, Yang L, Nie H, Shen S, Dong C, Bai Y, Sun Q, Zhao J, Liu H. Lipid profiling of cyanobacteriaSynechococcussp. PCC 7002 using two-dimensional liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2016; 39:3745-3753. [DOI: 10.1002/jssc.201600315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Yabing Shan
- Chinese Academy of Geological Sciences; National Research Center for Geoanalysis; Beijing China
- Institute of analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Yiqun Liu
- State Key Lab of Protein and Plant Sciences, School of Life Science; Peking University; Beijing China
| | - Li Yang
- Institute of analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Honggang Nie
- Analytical Instrumentation Center; Peking University; Beijing China
| | - Sensen Shen
- Institute of analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Chunxia Dong
- State Key Lab of Protein and Plant Sciences, School of Life Science; Peking University; Beijing China
| | - Yu Bai
- Institute of analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Qing Sun
- Chinese Academy of Geological Sciences; National Research Center for Geoanalysis; Beijing China
| | - Jindong Zhao
- State Key Lab of Protein and Plant Sciences, School of Life Science; Peking University; Beijing China
| | - Huwei Liu
- Institute of analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| |
Collapse
|
15
|
Garab G, Ughy B, Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. Subcell Biochem 2016; 86:127-57. [PMID: 27023234 DOI: 10.1007/978-3-319-25979-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.
Collapse
Affiliation(s)
- Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Bettina Ughy
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Reimund Goss
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Schaller-Laudel S, Volke D, Redlich M, Kansy M, Hoffmann R, Wilhelm C, Goss R. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:364-76. [PMID: 26368016 DOI: 10.1016/j.plaphy.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/14/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 05/24/2023]
Abstract
The study investigated the influence of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt) on the spectroscopic characteristics, structure and protein composition of isolated fucoxanthin chlorophyll protein (FCP) complexes of the pennate diatom Phaeodactylum tricornutum. 77 K fluorescence emission spectra revealed that Dt-containing FCP complexes showed a characteristic long wavelength fluorescence emission at 700 nm at a pH-value of 5 whereas DD-enriched FCPs retained the typical 680 nm fluorescence emission maximum of isolated FCPs. The 700 nm emission in Dt-containing FCPs indicates an aggregation of antenna complexes and is a typical feature of the quenching site Q1 in recent models for non-photochemical fluorescence quenching (NPQ). A comparable long-wavelength fluorescence emission was found in FCP complexes prepared with either triton X-100 or n-dodecyl β-D-maltoside as detergent. A treatment of the FCP complexes at low pH-values in the presence of a high concentration of Mg(2+) ions showed that the extent of FCP aggregation which leads to the 700 nm fluorescence emission is different from the macro-aggregation of antenna complexes in higher plants. Protein analyses by mass spectrometry showed that the protein composition of the DD- and Dt-enriched FCP complexes was comparable. However, the Lhcf6 and Lhcr1 polypeptides were only found in Dt-enriched FCPs isolated with dodecyl maltoside whereas the Lhcf17 protein was only detected in DD-enriched FCPs prepared with triton. With respect to low pH-induced antenna aggregation it is important that the Lhcx1 protein was found in both DD- and Dt-enriched FCPs, albeit with only two peptides with confident scores.
Collapse
Affiliation(s)
- Susann Schaller-Laudel
- Institute of Biology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Daniela Volke
- Institute for Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Matthias Redlich
- Institute of Biology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Marcel Kansy
- Institute of Biology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute for Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany.
| |
Collapse
|
17
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
18
|
Stoichev S, Krumova SB, Andreeva T, Busto JV, Todinova S, Balashev K, Busheva M, Goñi FM, Taneva SG. Low pH modulates the macroorganization and thermal stability of PSII supercomplexes in grana membranes. Biophys J 2015; 108:844-853. [PMID: 25692589 PMCID: PMC4336371 DOI: 10.1016/j.bpj.2014.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022] Open
Abstract
Protonation of the lumen-exposed residues of some photosynthetic complexes in the grana membranes occurs under conditions of high light intensity and triggers a major photoprotection mechanism known as energy dependent nonphotochemical quenching. We have studied the role of protonation in the structural reorganization and thermal stability of isolated grana membranes. The macroorganization of granal membrane fragments in protonated and partly deprotonated state has been mapped by means of atomic force microscopy. The protonation of the photosynthetic complexes has been found to induce large-scale structural remodeling of grana membranes-formation of extensive domains of the major light-harvesting complex of photosystem II and clustering of trimmed photosystem II supercomplexes, thinning of the membrane, and reduction of its size. These events are accompanied by pronounced thermal destabilization of the photosynthetic complexes, as evidenced by circular dichroism spectroscopy and differential scanning calorimetry. Our data reveal a detailed nanoscopic picture of the initial steps of nonphotochemical quenching.
Collapse
Affiliation(s)
- Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sashka B Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jon V Busto
- Unidad de Biofísica (CSIC, UPV-EHU) and Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Konstantin Balashev
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Mira Busheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV-EHU) and Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria; Unidad de Biofísica (CSIC, UPV-EHU) and Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
19
|
Light acclimation in diatoms: from phenomenology to mechanisms. Mar Genomics 2014; 16:5-15. [PMID: 24412570 DOI: 10.1016/j.margen.2013.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
This review summarizes the current knowledge about light acclimation processes in diatoms. Against the background of the phenomenological description of the process in the 70s-80s, the recent progress in diatom genetics has generated new information about the underlying mechanisms. Although the general responses of diatoms to changes in the light climate are comparable to the green algal lineage, many differences in the underlying mechanisms have been observed in the last ten years, yielding clear evidence that the regulatory network in diatoms has unique traits that might explain their ecological success.
Collapse
|