1
|
Pan X, Yue Z, She Z, He X, Wang S, Chuai X, Wang J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms 2023; 11:microorganisms11040979. [PMID: 37110402 PMCID: PMC10142529 DOI: 10.3390/microorganisms11040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this study, we analyzed the structural traits and interactions of eukaryotes (primarily fungi and microalgae) in acidic pit lakes subjected to environmental gradients. Based on the findings, microalgae and fungi were found to dominate different water layers. Specifically, Chlorophyta showed dominance in the well-lit aerobic surface layer, whereas Basidiomycota was more abundant in the dark anoxic lower layer. Co-occurrence network analysis showed that reciprocal relationships between fungi and microalgae were prevalent in extremely acidic environments. Highly connected taxa within this network were Chlamydomonadaceae, Sporidiobolaceae, Filobasidiaceae, and unclassified Eukaryotes. Redundancy analysis (RDA) and random forest models revealed that Chlorophyta and Basidiomycota responded strongly to environmental gradients. Further analysis indicated that eukaryotic community structure was mainly determined by nutrient and metal concentrations. This study investigates the potential symbiosis between fungi and microalgae in the acidic pit lake, providing valuable insights for future eukaryotic biodiversity studies on AMD remediation.
Collapse
Affiliation(s)
- Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Xiao He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| |
Collapse
|
2
|
Lachmann SC, Mettler‐Altmann T, Wacker A, Spijkerman E. Nitrate or ammonium: Influences of nitrogen source on the physiology of a green alga. Ecol Evol 2019; 9:1070-1082. [PMID: 30805141 PMCID: PMC6374670 DOI: 10.1002/ece3.4790] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/25/2022] Open
Abstract
In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium ( NH 4 + )-use, in contrast to nitrate ( NO 3 - )-use, more energy remains for other metabolic processes, especially under CO2- and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on NH 4 + or NO 3 - under covariation of CO2 and Pi-supply in order to determine limitations, in a full-factorial design. As expected, results revealed higher carbon fixation rates for NH 4 + -grown cells compared to growth with NO 3 - under low CO2 conditions. NO 3 - -grown cells accumulated more of the nine analyzed amino acids, especially under Pi-limited conditions, compared to cells provided with NH 4 + . This is probably due to a slower protein synthesis in cells provided with NO 3 - . In contrast to our expectations, compared to NH 4 + -grown cells NO 3 - -grown cells had higher photosynthetic efficiency under Pi-limitation. In conclusion, growth on the Ni-source NH 4 + did not result in a clearly enhanced Ci-assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.
Collapse
Affiliation(s)
| | - Tabea Mettler‐Altmann
- Cluster of Excellence on Plant Sciences and Institute of Plant BiochemistryHeinrich‐Heine UniversityDüsseldorfGermany
| | - Alexander Wacker
- Heisenberg‐Group: Theoretical Aquatic Ecology and Ecophysiology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Elly Spijkerman
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Smith-Harding TJ, Beardall J, Mitchell JG. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. JOURNAL OF PHYCOLOGY 2017; 53:1159-1170. [PMID: 28771812 DOI: 10.1111/jpy.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Carbon dioxide concentrating mechanisms (CCMs) act to improve the supply of CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. There is substantial evidence that in some microalgal species CCMs involve an external carbonic anhydrase (CAext ) and that CAext activity is induced by low CO2 concentrations in the growth medium. However, much of this work has been conducted on cells adapted to air-equilibrium concentrations of CO2 , rather than to changing CO2 conditions caused by growing microalgal populations. We investigated the role of CAext in inorganic carbon (Ci ) acquisition and photosynthesis at three sampling points during the growth cycle of the cosmopolitan marine diatom Chaetoceros muelleri. We observed that CAext activity increased with decreasing Ci , particularly CO2 , concentration, supporting the idea that CAext is modulated by external CO2 concentration. Additionally, we found that the contribution of CAext activity to carbon acquisition for photosynthesis varies over time, increasing between the first and second sampling points before decreasing at the last sampling point, where external pH was high. Lastly, decreases in maximum quantum yield of photosystem II (Fv /Fm ), chlorophyll, maximum relative electron transport rate, light harvesting efficiency (α) and maximum rates of Ci - saturated photosynthesis (Vmax ) were observed over time. Despite this decrease in photosynthetic capacity an up-regulation of CCM activity, indicated by a decreasing half-saturation constant for CO2 (K0.5 CO2 ), occurred over time. The flexibility of the CCM during the course of growth in C. muelleri may contribute to the reported dominance and persistence of this species in phytoplankton blooms.
Collapse
Affiliation(s)
- Tamsyne Jade Smith-Harding
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - James Gordon Mitchell
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
4
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
5
|
Hao C, Wei P, Pei L, Du Z, Zhang Y, Lu Y, Dong H. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:507-516. [PMID: 28131478 DOI: 10.1016/j.envpol.2017.01.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43-280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, "Ferrovum", a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic and Alpine suggested that the native Chlamydomonas species may have been both acidophilic and psychrophilic after a long acclimation time in this extreme environment.
Collapse
Affiliation(s)
- Chunbo Hao
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Pengfei Wei
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Lixin Pei
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zerui Du
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yi Zhang
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yanchun Lu
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
6
|
Kiełbowicz-Matuk A, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. PLANT, CELL & ENVIRONMENT 2017; 40:424-440. [PMID: 27928822 DOI: 10.1111/pce.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes.
Collapse
Affiliation(s)
| | - Jagoda Czarnecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Ewa Banachowicz
- Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Tadeusz Rorat
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
7
|
Lachmann SC, Maberly SC, Spijkerman E. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae). JOURNAL OF PHYCOLOGY 2016; 52:1051-1063. [PMID: 27624741 DOI: 10.1111/jpy.12462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (Ci ) acquisition strategies are very diverse among microalgae and Ci availability varies greatly within and among habitats, we hypothesized that Ci acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of Ci uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. The pH-drift and Ci uptake kinetic experiments were used to characterize Ci acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2 , whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2 -acclimated cultures ranged between 0.6 and 1.4 μM CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH-drifts. Ci uptake kinetics at different pH values showed that the affinity for Ci was largely influenced by external pH, being highest under conditions where CO2 dominated the Ci pool. In conclusion, Ci acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between Ci acquisition and ecological distribution.
Collapse
Affiliation(s)
| | - Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster, LA1 4AP, UK
| | - Elly Spijkerman
- Universität Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
| |
Collapse
|
8
|
Moroney JV, Wee JL. CCM8: the eighth international symposium on inorganic carbon uptake by aquatic photosynthetic organisms. PHOTOSYNTHESIS RESEARCH 2014; 121:107-110. [PMID: 24861895 DOI: 10.1007/s11120-013-9965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The articles in this special issue of Photosynthesis Research arose from the presentations given at the Eighth International Symposium on Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms held from May 27 to June 1, 2013 in New Orleans, Louisiana USA. The meeting covered all the aspects of CO2 concentrating mechanisms (CCMs) present in photosynthetic bacteria, microalgae and macrophytes, and spanned disciplines from the molecular biology of CCMs to the importance of CCMs in aquatic ecosystems. The publications in this special issue represent our current understanding of CCMs and highlight recent advances in the field. The influences of CCMs on algal biofuel production as well as recent efforts to use the CCM to improve crop plants are also explored.
Collapse
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | |
Collapse
|