1
|
Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019; 9:E647. [PMID: 31653042 PMCID: PMC6920818 DOI: 10.3390/biom9110647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Heavy metal pollution is an increasing global concern. Among heavy metals, mercury (Hg) is especially dangerous because of its massive release into the environment and high toxicity, especially for aquatic organisms. The molecular response mechanisms of algae to Hg exposure are mostly unknown. Here, we combine physiological, biochemical, and transcriptomic analysis to provide, for the first time, a comprehensive view on the pathways activated in Chromera velia in response to toxic levels of Hg. Production of hydrogen peroxide and superoxide anion, two reactive oxygen species (ROS), showed opposite patterns in response to Hg2+ while reactive nitrogen species (RNS) levels did not change. A deep RNA sequencing analysis generated a total of 307,738,790 high-quality reads assembled in 122,874 transcripts, representing 89,853 unigenes successfully annotated in databases. Detailed analysis of the differently expressed genes corroborates the biochemical results observed in ROS production and suggests novel putative molecular mechanisms in the algal response to Hg2+. Moreover, we indicated that important transcription factor (TF) families associated with stress responses differentially expressed in C. velia cultures under Hg stress. Our study presents the first in-depth transcriptomic analysis of C. velia, focusing on the expression of genes involved in different detoxification defense systems in response to heavy metal stress.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Roberto De Michele
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Ayush Sharma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Kuthanová Trsková E, Belgio E, Yeates AM, Sobotka R, Ruban AV, Kaňa R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4483-4493. [PMID: 29955883 PMCID: PMC6093471 DOI: 10.1093/jxb/ery240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/26/2018] [Indexed: 05/25/2023]
Abstract
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
Collapse
Affiliation(s)
- Eliška Kuthanová Trsková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| | - Erica Belgio
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
| | - Anna M Yeates
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská, České Budějovice, Czech republic
| |
Collapse
|
3
|
Belgio E, Trsková E, Kotabová E, Ewe D, Prášil O, Kaňa R. High light acclimation of Chromera velia points to photoprotective NPQ. PHOTOSYNTHESIS RESEARCH 2018; 135:263-274. [PMID: 28405863 DOI: 10.1007/s11120-017-0385-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/06/2017] [Indexed: 05/13/2023]
Abstract
It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761-2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.
Collapse
Affiliation(s)
- Erica Belgio
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic.
| | - Eliška Trsková
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Czech Budejovice, Czech Republic
| | - Eva Kotabová
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Daniela Ewe
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Ondřej Prášil
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Czech Budejovice, Czech Republic
| | - Radek Kaňa
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Czech Budejovice, Czech Republic
| |
Collapse
|
4
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
5
|
Büchel C, Wilhelm C, Wagner V, Mittag M. Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:38-43. [PMID: 28709708 DOI: 10.1016/j.jplph.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Comparative proteome analysis of subcellular compartments like thylakoid membranes and their associated supercomplexes can deliver important in-vivo information on the molecular basis of physiological functions which go far beyond to that what can be learnt from transcriptional-based gene expression studies. For instance, the finding that light intensity influences mainly the relative stoichiometry of subunits could be obtained only by high resolution proteome analysis. The high sensitivity of LC-ESI-MS/MS based proteome analysis allows the determination of proteins in very small subfractions along with their non-labeled semi quantitative analysis. This provides insights in the protein-protein interactions of supercomplexes that are the operative units in intact cells. Here, we have focused on functional proteome approaches for the identification of microalgal light-harvesting complex proteins in chloroplasts and the eyespot in general and in detail for those of diatoms that are exposed to varying light conditions.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
6
|
Kaňa R, Kotabová E, Kopečná J, Trsková E, Belgio E, Sobotka R, Ruban AV. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett 2016; 590:1076-85. [PMID: 26988983 DOI: 10.1002/1873-3468.12130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/01/2023]
Abstract
Non-photochemical quenching (NPQ) is a photoprotective mechanism in light-harvesting antennae. NPQ is triggered by chloroplast thylakoid lumen acidification and is accompanied by violaxanthin de-epoxidation to zeaxanthin, which further stimulates NPQ. In the present study, we show that violaxanthin can act in the opposite direction to zeaxanthin because an increase in the concentration of violaxanthin reduced NPQ in the light-harvesting antennae of Chromera velia. The correlation overlapped with a similar relationship between violaxanthin and NPQ as observed in isolated higher plant light-harvesting complex II. The data suggest that violaxanthin in C. velia can act as an inhibitor of NPQ, indicating that violaxanthin has to be removed from the vicinity of the protein to reach maximal NPQ.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Kotabová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Kopečná
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Eliška Trsková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Erica Belgio
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.,School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| |
Collapse
|
7
|
Oborník M, Lukeš J. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites. Annu Rev Microbiol 2015; 69:129-44. [PMID: 26092225 DOI: 10.1146/annurev-micro-091014-104449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.
Collapse
|