1
|
Li X, Huang G, Zhu L, Hao C, Sui SF, Qin X. Structure of the red-shifted Fittonia albivenis photosystem I. Nat Commun 2024; 15:6325. [PMID: 39060282 PMCID: PMC11282222 DOI: 10.1038/s41467-024-50655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Photosystem I (PSI) from Fittonia albivenis, an Acanthaceae ornamental plant, is notable among green plants for its red-shifted emission spectrum. Here, we solved the structure of a PSI-light harvesting complex I (LHCI) supercomplex from F. albivenis at 2.46-Å resolution using cryo-electron microscopy. The supercomplex contains a core complex of 14 subunits and an LHCI belt with four antenna subunits (Lhca1-4) similar to previously reported angiosperm PSI-LHCI structures; however, Lhca3 differs in three regions surrounding a dimer of low-energy chlorophylls (Chls) termed red Chls, which absorb far-red beyond visible light. The unique amino acid sequences within these regions are exclusively shared by plants with strongly red-shifted fluorescence emission, suggesting candidate structural elements for regulating the energy state of red Chls. These results provide a structural basis for unraveling the mechanisms of light harvest and transfer in PSI-LHCI of under canopy plants and for designing Lhc to harness longer-wavelength light in the far-red spectral range.
Collapse
Affiliation(s)
- Xiuxiu Li
- School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Lixia Zhu
- School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenyang Hao
- School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Xiaochun Qin
- School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
2
|
Mäusle SM, Agarwala N, Eichmann VG, Dau H, Nürnberg DJ, Hastings G. Nanosecond time-resolved infrared spectroscopy for the study of electron transfer in photosystem I. PHOTOSYNTHESIS RESEARCH 2024; 159:229-239. [PMID: 37420121 PMCID: PMC10991071 DOI: 10.1007/s11120-023-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Microsecond time-resolved step-scan FTIR difference spectroscopy was used to study photosystem I (PSI) from Thermosynechococcus vestitus BP-1 (T. vestitus, formerly known as T. elongatus) at 77 K. In addition, photoaccumulated (P700+-P700) FTIR difference spectra were obtained at both 77 and 293 K. The FTIR difference spectra are presented here for the first time. To extend upon these FTIR studies nanosecond time-resolved infrared difference spectroscopy was also used to study PSI from T. vestitus at 296 K. Nanosecond infrared spectroscopy has never been used to study PSI samples at physiological temperatures, and here it is shown that such an approach has great value as it allows a direct probe of electron transfer down both branches in PSI. In PSI at 296 K, the infrared flash-induced absorption changes indicate electron transfer down the B- and A-branches is characterized by time constants of 33 and 364 ns, respectively, in good agreement with visible spectroscopy studies. These time constants are associated with forward electron transfer from A1- to FX on the B- and A-branches, respectively. At several infrared wavelengths flash-induced absorption changes at 296 K recover in tens to hundreds of milliseconds. The dominant decay phase is characterized by a lifetime of 128 ms. These millisecond changes are assigned to radical pair recombination reactions, with the changes being associated primarily with P700+ rereduction. This conclusion follows from the observation that the millisecond infrared spectrum is very similar to the photoaccumulated (P700+-P700) FTIR difference spectrum.
Collapse
Affiliation(s)
- Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Viktor G Eichmann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - Dennis J Nürnberg
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
3
|
Parida S, Jena M, Behera AK, Mandal AK, Nayak R, Patra S. A Novel Phytocolorant, Neoxanthin, as a Potent Chemopreventive: Current Progress and Future Prospects. Curr Med Chem 2024; 31:5149-5164. [PMID: 38173069 DOI: 10.2174/0109298673273106231208102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cancer is a general term for a group of similar diseases. It is a combined process that results from an accumulation of abnormalities at different biological levels, which involves changes at both genetic and biochemical levels in the cells. Several modifiable risk factors for each type of cancer include heredity, age, and institutional screening guidelines, including colonoscopy, mammograms, prostate-specific antigen testing, etc., which an individual cannot modify. Although a wide range of resources is available for cancer drugs and developmental studies, the cases are supposed to increase by about 70% in the next two decades due to environmental factors commonly driven by the way of living. The drugs used in cancer prevention are not entirely safe, have potential side effects and are generally unsuitable owing to substantial monetary costs. Interventions during the initiation and progression of cancer can prevent, diminish, or stop the transformation of healthy cells on the way to malignancy. Diet modifications are one of the most promising lifestyle changes that can decrease the threat of cancer development by nearly 40%. Neoxanthin is a xanthophyll pigment found in many microalgae and macroalgae, having significant anti-cancer, antioxidant and chemo-preventive activity. In this review, we have focused on the anti-cancer activity of neoxanthin on different cell lines and its cancer-preventive activity concerning obesity and oxidative stress. In addition to this, the preclinical studies and future perspectives are also discussed in this review.
Collapse
Affiliation(s)
- Sudhamayee Parida
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Srimanta Patra
- Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
4
|
Li Z, Zhou C, Zhao S, Zhang J, Liu X, Sang M, Qin X, Yang Y, Han G, Kuang T, Shen JR, Wang W. Structural and functional properties of different types of siphonous LHCII trimers from an intertidal green alga Bryopsis corticulans. Structure 2023; 31:1247-1258.e3. [PMID: 37633266 DOI: 10.1016/j.str.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Light-harvesting complexes of photosystem II (LHCIIs) in green algae and plants are vital antenna apparatus for light harvesting, energy transfer, and photoprotection. Here we determined the structure of a siphonous-type LHCII trimer from the intertidal green alga Bryopsis corticulans by X-ray crystallography and cryo-electron microscopy (cryo-EM), and analyzed its functional properties by spectral analysis. The Bryopsis LHCII (Bry-LHCII) structures in both homotrimeric and heterotrimeric form show that green light-absorbing siphonaxanthin and siphonein occupied the sites of lutein and violaxanthin in plant LHCII, and two extra chlorophylls (Chls) b replaced Chls a. Binding of these pigments expands the blue-green light absorption of B. corticulans in the tidal zone. We observed differences between the Bry-LHCII homotrimer crystal and cryo-EM structures, and also between Bry-LHCII homotrimer and heterotrimer cryo-EM structures. These conformational changes may reflect the flexibility of Bry-LHCII, which may be required to adapt to light fluctuations from tidal rhythms.
Collapse
Affiliation(s)
- Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinyang Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xueyang Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
5
|
Zheng M, Zhou C, Wang W, Kuang T, Shen J, Tian L. Origin of Energy Dissipation in the Oligomeric Fucoxanthin-Chlorophyll a/c Binding Proteins. J Phys Chem Lett 2023; 14:7967-7974. [PMID: 37647015 DOI: 10.1021/acs.jpclett.3c01633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/01/2023]
Abstract
Fucoxanthin-chlorophyll proteins (FCPs) are a family of photosynthetic light-harvesting complex (LHC) proteins found in diatoms. They efficiently capture photons and regulate their functions, ensuring diatom survival in highly fluctuating light. FCPs are present in different oligomeric states in vivo, but functional differences among these FCP oligomers are not yet fully understood. Here we characterized two types of antenna complexes (FCP-B/C dimers and FCP-A tetramers) that coexist in the marine centric diatom Chaetoceros gracilis using both time-resolved fluorescence and transient absorption spectroscopy. We found that the FCP-B/C complex did not show fluorescence quenching, whereas FCP-A was severely quenched, via an ultrafast excitation energy transfer (EET) pathway from Chl a Qy to the fucoxanthin S1/ICT state. These results highlight the functional differences between FCP dimers and tetramers and indicate that the EET pathway from Chl a to carotenoids is an energy dissipation mechanism conserved in a variety of photosynthetic organisms.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jianren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
6
|
Wu F, Li X, Yang G, Song J, Zhao X, Zhu L, Qin X. Assembly of LHCA5 into PSI blue shifts the far-red fluorescence emission in higher plants. Biochem Biophys Res Commun 2022; 612:77-83. [PMID: 35512460 DOI: 10.1016/j.bbrc.2022.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
In higher plants, the PSI core complex is associated with light-harvesting complex I (LHCI), forming the PSI-LHCI super-complex. In vascular plants, four major antenna proteins (LHCA1-4) are assembled in the order of LHCA1, LHCA4, LHCA2, and LHCA3 into a crescent-shaped LHCI, while LHCA5 and LHCA6 are minor antenna proteins. By contrast, in moss and green algae, LHCA5 or LHCA5-like protein functions as one of the major antenna proteins by residing at the second site of LHCI. In order to learn the effect of binding different LHCA proteins, i.e. LHCA4 or LHCA5, within the PSI-LHCI super-complex on photosynthetic properties of plants, we constructed LHCA5 overexpression plants with a wild type (WT) background and an lhca4 mutant background in Arabidopsis thaliana. The results showed that: (i) there are little difference in phenotype, pigment composition and chlorophyll fluorescence parameters between the transgenic Arabidopsis and their corresponding background materials; (ii) in spite of a small amount of LHCA5, the LHCA5-included PSI-LHCI super-complex can be obtained by extracting samples incubated with anti-FLAG M2 Affinity Gel, in which LHCA5 is found to substitute for LHCA4 as analyzed by immunoblotting analysis; (iii) the replacement of LHCA4 with LHCA5 within PSI-LHCI super-complex leads to a blue shift in low temperature fluorescence emission, suggesting a decrease in far-red absorbance. These results provide new clues for understanding the position and function of LHCA4 and LHCA5 during the evolution of green plants from aquatic to terrestrial lifestyles.
Collapse
Affiliation(s)
- Fenghua Wu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiuxiu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Gongxian Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Jince Song
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaoyu Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
7
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Levin G, Kulikovsky S, Liveanu V, Eichenbaum B, Meir A, Isaacson T, Tadmor Y, Adir N, Schuster G. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1260-1277. [PMID: 33725388 DOI: 10.1111/tpj.15232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | | | | | - Ayala Meir
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Tal Isaacson
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
9
|
Wu X, Wu J, Wang Y, He M, He M, Liu W, Shu S, Sun J, Guo S. The key cyclic electron flow protein PGR5 associates with cytochrome b 6f, and its function is partially influenced by the LHCII state transition. HORTICULTURE RESEARCH 2021; 8:55. [PMID: 33664242 PMCID: PMC7933433 DOI: 10.1038/s41438-021-00460-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 05/08/2023]
Abstract
In plants and algae, PGR5-dependent cyclic electron flow (CEF) is an important regulator of acclimation to fluctuating environments, but how PGR5 participates in CEF is unclear. In this work, we analyzed two PGR5s in cucumber (Cucumis sativus L.) under different conditions and found that CsPGR5a played the dominant role in PGR5-dependent CEF. The results of yeast two-hybrid, biomolecular fluorescence complementation (BiFC), blue native PAGE, and coimmunoprecipitation (CoIP) assays showed that PGR5a interacted with PetC, Lhcb3, and PsaH. Furthermore, the intensity of the interactions was dynamic during state transitions, and the abundance of PGR5 attached to cyt b6f decreased during the transition from state 1 to state 2, which revealed that the function of PGR5a is related to the state transition. We proposed that PGR5 is a small mobile protein that functions when attached to protein complexes.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meiwen He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Jiangsu, Suqian, 223800, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Jiangsu, Suqian, 223800, China.
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Jiangsu, Suqian, 223800, China.
| |
Collapse
|
10
|
Chang L, Tian L, Ma F, Mao Z, Liu X, Han G, Wang W, Yang Y, Kuang T, Pan J, Shen JR. Regulation of photosystem I-light-harvesting complex I from a red alga Cyanidioschyzon merolae in response to light intensities. PHOTOSYNTHESIS RESEARCH 2020; 146:287-297. [PMID: 32766997 DOI: 10.1007/s11120-020-00778-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic organisms use different means to regulate their photosynthetic activity in respond to different light conditions under which they grow. In this study, we analyzed changes in the photosystem I (PSI) light-harvesting complex I (LHCI) supercomplex from a red alga Cyanidioschyzon merolae, upon growing under three different light intensities, low light (LL), medium light (ML), and high light (HL). The results showed that the red algal PSI-LHCI is separated into two bands on blue-native PAGE, which are designated PSI-LHCI-A and PSI-LHCI-B, respectively, from cells grown under LL and ML. The former has a higher molecular weight and binds more Lhcr subunits than the latter. They are considered to correspond to the two types of PSI-LHCI identified by cryo-electron microscopic analysis recently, namely, the former with five Lhcrs and the latter with three Lhcrs. The amount of PSI-LHCI-A is higher in the LL-grown cells than that in the ML-grown cells. In the HL-grown cells, PSI-LHCI-A completely disappeared and only PSI-LHCI-B was observed. Furthermore, PSI core complexes without Lhcr attached also appeared in the HL cells. Fluorescence decay kinetics measurement showed that Lhcrs are functionally connected with the PSI core in both PSI-LHCI-A and PSI-LHCI-B obtained from LL and ML cells; however, Lhcrs in the PSI-LHCI-B fraction from the HL cells are not coupled with the PSI core. These results indicate that the red algal PSI not only regulates its antenna size but also adjusts the functional connection of Lhcrs with the PSI core in response to different light intensities.
Collapse
Affiliation(s)
- Lijing Chang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lirong Tian
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zhiyuan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xiaochi Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jie Pan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No, 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Photoprotective Role of Neoxanthin in Plants and Algae. Molecules 2020; 25:molecules25204617. [PMID: 33050573 PMCID: PMC7587190 DOI: 10.3390/molecules25204617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Light is a paramount parameter driving photosynthesis. However, excessive irradiance leads to the formation of reactive oxygen species that cause cell damage and hamper the growth of photosynthetic organisms. Xanthophylls are key pigments involved in the photoprotective response of plants and algae to excessive light. Of particular relevance is the operation of xanthophyll cycles (XC) leading to the formation of de-epoxidized molecules with energy dissipating capacities. Neoxanthin, found in plants and algae in two different isomeric forms, is involved in the light stress response at different levels. This xanthophyll is not directly involved in XCs and the molecular mechanisms behind its photoprotective activity are yet to be fully resolved. This review comprehensively addresses the photoprotective role of 9′-cis-neoxanthin, the most abundant neoxanthin isomer, and one of the major xanthophyll components in plants’ photosystems. The light-dependent accumulation of all-trans-neoxanthin in photosynthetic cells was identified exclusively in algae of the order Bryopsidales (Chlorophyta), that lack a functional XC. A putative photoprotective model involving all-trans-neoxanthin is discussed.
Collapse
|
12
|
Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, Shen JR, Kuang T, Sui SF. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. NATURE PLANTS 2019; 5:263-272. [PMID: 30850820 DOI: 10.1038/s41477-019-0379-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Photosystem I (PSI) is a highly efficient natural light-energy converter, and has diverse light-harvesting antennas associated with its core in different photosynthetic organisms. In green algae, an extremely large light-harvesting complex I (LHCI) captures and transfers energy to the PSI core. Here, we report the structure of PSI-LHCI from a green alga Bryopsis corticulans at 3.49 Å resolution, obtained by single-particle cryo-electron microscopy, which revealed 13 core subunits including subunits characteristic of both prokaryotes and eukaryotes, and 10 light-harvesting complex a (Lhca) antennas that form a double semi-ring and an additional Lhca dimer, including a novel four-transmembrane-helix Lhca. In total, 244 chlorophylls were identified, some of which were located at key positions for the fast energy transfer. These results provide a firm structural basis for unravelling the mechanisms of light-energy harvesting, transfer and quenching in the green algal PSI-LHCI, and important clues as to how PSI-LHCI has changed during evolution.
Collapse
Affiliation(s)
- Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Mingmei Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linpeng Cheng
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Affiliation(s)
- Kai‐Xiong Ye
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Ting‐Ting Fan
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Lawrence Jordan Keen
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Bing‐Nan Han
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| |
Collapse
|
14
|
Giovagnetti V, Han G, Ware MA, Ungerer P, Qin X, Wang WD, Kuang T, Shen JR, Ruban AV. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae). PLANTA 2018; 247:1293-1306. [PMID: 29460179 PMCID: PMC5945744 DOI: 10.1007/s00425-018-2854-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/21/2017] [Accepted: 01/20/2018] [Indexed: 05/18/2023]
Abstract
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Petra Ungerer
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wen-Da Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Naka, Okayama, 700-8530, Japan.
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
15
|
Yang H, Li P, Zhang A, Wen X, Zhang L, Lu C. Tetratricopeptide repeat protein Pyg7 is essential for photosystem I assembly by interacting with PsaC in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28636143 DOI: 10.1111/tpj.13618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
Although progress has been made in determining the structure and understanding the function of photosystem I (PSI), the PSI assembly process remains poorly understood. PsaC is an essential subunit of PSI and participates in the transfer of electrons to ferredoxin. However, how PsaC is assembled during accumulation of the PSI complex is unknown. In the present study, we showed that Pyg7 localized to the stromal thylakoid and associated with the PSI complex. We also showed that Pyg7 interacted with PsaC. Furthermore, we found that the PSI assembly process was blocked following formation of the PsaAB heterodimer in the pyg7 mutant. In addition, the analyses of PSI stability in Pyg7RNAi plants showed that Pyg7 is involved in maintaining the assembled PSI complex under excess-light conditions. Moreover, we demonstrated that decreased Pyg7 content resulted in decreased efficiency of PSI assembly in Pyg7RNAi plants. These findings suggest that the role of Pyg7 in PSI biogenesis has evolved as an essential assembly factor by interacting with PsaC in Arabidopsis, in addition to being a stability factor for PSI as seen in Synechocystis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihong Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Tian L, Liu Z, Wang F, Shen L, Chen J, Chang L, Zhao S, Han G, Wang W, Kuang T, Qin X, Shen JR. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2017; 133:201-214. [PMID: 28405862 DOI: 10.1007/s11120-017-0384-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.
Collapse
Affiliation(s)
- Lirong Tian
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Jinghua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lijing Chang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- School of Biological Science and Technology, University of Jinan, No.336, Nanxinzhuang West Road, Jinan, 250022, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute of Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|