1
|
Egorkin NA, Dominnik EE, Maksimov EG, Sluchanko NN. Insights into the molecular mechanism of yellow cuticle coloration by a chitin-binding carotenoprotein in gregarious locusts. Commun Biol 2024; 7:448. [PMID: 38605243 PMCID: PMC11009388 DOI: 10.1038/s42003-024-06149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble β-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds β-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, β-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while β-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. High Molecular Weight λ-Carrageenan Improves the Color Stability of Phycocyanin by Associative Interactions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.915194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phycocyanin is a protein-chromophore structure present in Arthrospira platensis commonly used as a blue-colorant in food. Color losses of phycocyanin can be reduced by electrostatic complexation with λ-carrageenan. The aim of this study was to investigate the effect of molecular weight (MW) of λ-carrageenan on the color stabilization of electrostatic complexes formed with phycocyanin and λ-carrageenan. Samples were heated to 70 or 90°C at pH 3.0 and stored at 25°C for 14 days. The MW of λ-carrageenan was reduced by ultrasound treatments for 15, 30, 60, and 90 min. Prolonged ultrasonication had a pronounced effect on the Mw, which decreased from 2,341 to 228 kDa (0–90 min). Complexes prepared with low MW λ-carrageenan showed greater color changes compared to complexes prepared with high MW λ-carrageenan. The MW had no visible effect on color stability on day 0, but green/yellow shifts were observed during storage and after heating to 70°C. Medium MW showed less color stabilization effects compared to low MW when heated to 70°C. Moreover, for solutions prepared with ultrasonicated λ-carrageenan, significant hue shifts toward green/yellow, and precipitation were observed after a heat treatment at 90°C. In addition, the sizes of the complexes were significantly reduced (646–102 nm) by using ultrasonicated λ-carrageenan, except for the lowest MW λ-carrageenan when heated to 90°C. Overall, these findings demonstrated that decreasing the MW of λC had adverse effects on the color stability of PC:λC complexes heated to 70 and 90°C.
Collapse
|
3
|
Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with λ-carrageenan on blue color stability. Food Chem 2022; 380:132157. [DOI: 10.1016/j.foodchem.2022.132157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
|
4
|
Shao S, Zhao L, Li P, Su H, Chen X, Zhang Y. A study of the protein-protein interactions in the phycocyanin monomer from Synechocystis sp . PCC 6803 using a bacterial two-hybrid system. ENGINEERING MICROBIOLOGY 2022; 2:100019. [PMID: 39628847 PMCID: PMC11610994 DOI: 10.1016/j.engmic.2022.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/06/2024]
Abstract
Investigations into the intramolecular interactions of the native protein in solution are important to understand its structural stability as well as its potential uses in future applications. In this study, we used a bacterial two-hybrid system to investigate the interaction between the phycocyanin α and β subunits that form the phycocyanin monomer. Key amino acid residues responsible for the interaction between the subunits were identified, providing direct experimental evidence for the intramolecular interaction.
Collapse
Affiliation(s)
- Simi Shao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Longsheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Pingyi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Hainan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yuzhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Li Y, Gillilan R, Abbaspourrad A. Tuning C-Phycocyanin Photoactivity via pH-Mediated Assembly-Disassembly. Biomacromolecules 2021; 22:5128-5138. [PMID: 34767353 PMCID: PMC9131392 DOI: 10.1021/acs.biomac.1c01095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environment-triggered protein conformational changes have garnered wide interest in both fundamental research, for deciphering in vivo acclimatory responses, and practical applications, for designing stimuli-responsive probes. Here, we propose a protein-chromophore regulatory mechanism that allows for manipulation of C-phycocyanin (C-PC) from Spirulina platensis by environmental pH and UV irradiation. Using small-angle X-ray scattering, a pH-mediated C-PC assembly-disassembly pathway, from monomers to nonamers, was unraveled. Such flexible protein matrices impart tunability to the embedded tetrapyrroles, whose photochemical behaviors were found to be modulated by protein assembly states. UV irradiation on C-PC triggers pH-dependent singlet oxygen (1O2) generation and conformational changes. Intermolecular photo-crosslinking occurs at pH 5.0 via dityrosine species, which bridges solution-based C-PC oligomers into unprecedented dodecamers and 24-mers. These supramolecular assemblies impart C-PC at pH 5.0, which significantly enhanced 1O2 yield, fluorescence, and photostability relative to those at other pH values, a finding that makes C-PC appealing for tumor-targeted photodynamic therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, 14853 USA
| | - Richard Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, New York, 14853 USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, 14853 USA,Corresponding Author:
| |
Collapse
|
6
|
Ghosh S, Salama F, Dines M, Lahav A, Adir N. Biophysical and structural characterization of the small heat shock protein HspA from Thermosynechococcus vulcanus in 2 M urea. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:442-452. [PMID: 30711645 DOI: 10.1016/j.bbapap.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Small heat shock proteins (sHSPs) belong to the superfamily of molecular chaperones. They prevent aggregation of partially unfolded or misfolded client proteins, providing protection to organisms under stress conditions. Here, we report the biophysical and structural characterization of a small heat shock protein (HspA) from a thermophilic cyanobacterium Thermosynechococcus vulcanus in the presence of 2 M urea. HspA has been shown to be important for the protection of Photosystem II and the Phycobilisome antenna complex at elevated temperatures. Heterologously expressed HspA requires the presence of 1-2 M urea to maintain its solubility at concentrations required for most characterization methods. Spectroscopic studies reveal the presence of the β-sheet structure and intactness of the tertiary fold in HspA. In vitro assays show that the HspA maintains chaperone-like activity in protecting soluble proteins from thermal aggregation. Chromatography and electron microscopy show that the HspA exists as a mixture of oligomeric forms in the presence of 2 M urea. HspA was successfully crystallized only in the presence of 2 M urea. The crystal structure of HspA shows urea-induced loss of about 30% of the secondary structure without major alteration in the tertiary structure of the protein. The electron density maps reveal changes in the hydrogen bonding network which we attribute to the presence of urea. The crystal structure of HspA demonstrates a mixture of both direct interactions between urea and protein functionalities and interactions between urea and the surrounding solvent that indirectly affect the protein, which are in accordance with previously published studies.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Faris Salama
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Monica Dines
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Avital Lahav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
7
|
Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM. PLoS One 2015; 10:e0124580. [PMID: 25923120 PMCID: PMC4414346 DOI: 10.1371/journal.pone.0124580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein.
Collapse
|