1
|
Sarngadharan P, Holtkamp Y, Kleinekathöfer U. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex. J Phys Chem B 2024; 128:5201-5217. [PMID: 38756003 PMCID: PMC11145653 DOI: 10.1021/acs.jpcb.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 μs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 μs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | - Yannick Holtkamp
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | | |
Collapse
|
2
|
|
3
|
Šebelík V, Kuznetsova V, Lokstein H, Polívka T. Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. J Phys Chem Lett 2021; 12:3176-3181. [PMID: 33755477 DOI: 10.1021/acs.jpclett.1c00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
Femtosecond transient absorption spectroscopy following two-photon excitation (2PE) is used to determine the contributions of carotenoids and chlorophylls to the 2PE signals in the main plant light-harvesting complex (LHCII). For 2PE, excitation at 1210 and 1300 nm was used, being within the known 2PE profile of LHCII. At both excitation wavelengths, the transient absorption spectra exhibit a shape characteristic of excited chlorophylls with only a minor contribution from carotenoids. We compare the 2PE data measured for LHCII with those obtained from 2PE of a lutein/chlorophyll a mixture in acetone. We estimate that although the 2PE cross section of a single carotenoid in acetone is ∼1.7 times larger than that of a Chl a, due to the 1:3.5 carotenoid/Chl ratio in LHCII, only one-third of the absorbed 2PE photons excite carotenoids in LHCII in the 1200-1300 nm range.
Collapse
Affiliation(s)
- Václav Šebelík
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Gacek DA, Betke A, Nowak J, Lokstein H, Walla PJ. Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes. Phys Chem Chem Phys 2021; 23:8731-8738. [PMID: 33876032 DOI: 10.1039/d1cp00656h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions which are not fully understood, yet. However, certain excited states of Cars are optically one-photon forbidden ("dark") and can potentially undergo excitation energy transfer (EET) to (B)Chls following two-photon absorption (TPA). The amount of EET is reflected by the differences in TPA and two-photon excitation (TPE) spectra of a complex (multi-pigment) system. Since it is technically and analytically demanding to resolve optically forbidden states, different studies reported varying contributions of Cars and Chls to TPE/TPA spectra. In a study using well-defined 1 : 1 Car-tetrapyrrole dyads TPE contributions of tetrapyrrole molecules, including Chls, and Cars were measured. In these experiments, TPE of Cars dominated over Chl a TPE in a broad wavelength range. Another study suggested only minor contributions of Cars to TPE spectra of pigment-protein complexes such as the plant main light-harvesting complex (LHCII), in particular for wavelengths longer than ∼600/1200 nm. By joining forces and a combined analysis of all available data by both teams, we try to resolve this apparent contradiction. Here, we demonstrate that reconstruction of a wide spectral range of TPE for LHCII and photosystem I (PSI) requires both, significant Car and Chl contributions. Direct comparison of TPE spectra obtained in both studies demonstrates a good agreement of the primary data. We conclude that in TPE spectra of LHCII and PSI, the contribution of Chls is dominating above 600/1200 nm, whereas the contributions of forbidden Car states increase particularly at wavelengths shorter than 600/1200 nm. Estimates of Car contributions to TPA as well as TPE spectra are given for various wavelengths.
Collapse
Affiliation(s)
- Daniel A Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
5
|
Gacek DA, Holleboom CP, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2020; 143:19-30. [PMID: 31659623 DOI: 10.1007/s11120-019-00676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
Collapse
Affiliation(s)
- Daniel A Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Pen-Nan Liao
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Marco Negretti
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany.
| |
Collapse
|
6
|
Gacek DA, Holleboom C, Tietz S, Kirchhoff H, Walla PJ. PsbS‐dependent and ‐independent mechanisms regulate carotenoid‐chlorophyll energy coupling in grana thylakoids. FEBS Lett 2019; 593:3190-3197. [DOI: 10.1002/1873-3468.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Daniel A. Gacek
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| | - Christoph‐Peter Holleboom
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| | - Stefanie Tietz
- Institute of Biological Chemistry Washington State University Pullman WA USA
- DOE Plant Research Laboratory Michigan State University East Lansing MI USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry Washington State University Pullman WA USA
| | - Peter Jomo Walla
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| |
Collapse
|
7
|
de la Cruz
Valbuena G, V. A. Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G. Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii. J Phys Chem Lett 2019; 10:2500-2505. [PMID: 31042040 PMCID: PMC6613783 DOI: 10.1021/acs.jpclett.9b01184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Photosynthetic organisms possess photoprotection mechanisms from excess light conditions. The fastest response consists in the pH-triggered activation of a dissipation channel of the energy absorbed by the chlorophylls into heat, called nonphotochemical quenching. In green algae, the pigment binding complex LHCSR3 acts both as a chlorophyll quencher and as a pH detector. In this work, we study the quenching of the LHCSR3 protein in vitro considering two different protein aggregation states and two pH conditions using a combination of picosecond time-resolved photoluminescence and femtosecond transient absorption in the visible and NIR spectral regions. We find that the mechanisms at the basis of LHCSR3 quenching activity are always active, even at pH 7.5 and low aggregation. However, quenching efficiency is strongly enhanced by pH and by aggregation conditions. In particular, we find that electron transfer from carotenoids to chlorophylls is enhanced at low pH, while quenching mediated by protein-protein interactions is increased by going to a high aggregation state. We also observe a weak pH-dependent energy transfer from the chlorophylls to the S1 state of carotenoids.
Collapse
Affiliation(s)
| | - Franco V. A. Camargo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Rocio Borrego-Varillas
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Federico Perozeni
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- Center
for NanoScience and Technology@PoliMi, Istituto
Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- E-mail:
| | - Matteo Ballottari
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
- E-mail:
| | - Giulio Cerullo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- E-mail:
| |
Collapse
|
8
|
Fox KF, Ünlü C, Balevičius V, Ramdour BN, Kern C, Pan X, Li M, van Amerongen H, Duffy CD. A possible molecular basis for photoprotection in the minor antenna proteins of plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:471-481. [DOI: 10.1016/j.bbabio.2018.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022]
|
9
|
Gacek DA, Moore AL, Moore TA, Walla PJ. Two-Photon Spectra of Chlorophylls and Carotenoid–Tetrapyrrole Dyads. J Phys Chem B 2017; 121:10055-10063. [DOI: 10.1021/acs.jpcb.7b08502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| | - Ana L. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:7334-46. [PMID: 26817847 PMCID: PMC4817166 DOI: 10.1074/jbc.m115.704601] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.
Collapse
Affiliation(s)
- Matteo Ballottari
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Thuy B Truong
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Eleonora De Re
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720
| | - Erika Erickson
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| | - Giulio R Stella
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy, the Sorbonne Universités, UPMC Univ-Paris 6, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Graham R Fleming
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720 the Department of Chemistry, Hildebrand B77, University of California, Berkeley, California 94720-1460
| | - Roberto Bassi
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy,
| | - Krishna K Niyogi
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| |
Collapse
|
11
|
Duffy CD, Ruban AV. Dissipative pathways in the photosystem-II antenna in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:215-26. [DOI: 10.1016/j.jphotobiol.2015.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|